
I. INTRODUCTION

Electromechanical  systems (EMS) play an essential 
role  in  fulfilling  the  needs  of  modern  technological 
applications. The electrical energy supplied to these systems is 
transformed into mechanical energy with an efficiency of 60 
per  cent by electric  drives [1].  The requirements  in today’s 
technology  for  EMS quality  are  becoming  more  and  more 
demanding. In addition, the range of technological tasks that 
need  these  systems  broadens  every  year.  This  results  in  an 
increasing  necessity  for  more  advanced  modeling, 
identification and control strategies for these systems. Many 
applications  need  a  sufficiently  concise  and  accurate 
description  of  the  dynamics  of  these  systems.  This  is 
especially  true  in  automatic  control  applications.  Dynamic 
models describing the electromechanical system in use can be 
developed  using  principles  of  physics.  However,  models 
constructed in this way may be difficult to derive due to lack 
of sufficient knowledge or uncertainties in system dynamics.

An alternative way of building models is by system 
identification.  In  system  identification,  the  aim  is  to  find 
estimation  for  the  selected  dynamic  model  structure  using 
observed input and output data. Principles of physics are not 
directly  used to  develop a  model,  but  knowledge about  the 
system behavior maintains its importance. Such knowledge is 
of  great  value  for  setting  up  identification  experiments  to 
generate  the  required  measurements,  for  deciding  upon  the 
type of models to be used, and for determining the quality and 

validity of the estimated models. System identification often 
yields compact accurate models that are suitable for fast on-
line applications and for model-based predictive control. 

In  today’s  world  of  high  technology,  DC  electric 
drives (DCED) are still  important elements of technological 
processes for various applications in modern industry [1]. The 
main advantages of using DC motors in such applications are 
ease  of  control  for  speed  and  position,  wide  range  of 
operation, and ability to follow a set speed or position under 
load.  Having  these  capabilities,  these  systems  have  been 
extensively used in many industrial applications [2]. However, 
when a DC motor rotates at relatively low speeds and in both 
directions,  or  when  it  works  in  a  wide  range  of  operation 
where high precision control is needed, the nonlinear effects 
on system behavior become far from negligible and may lead 
to intolerable modeling errors and poor control performance 
[3].

The objective of this research is to present the results 
of a recent simulation and experimental study on identification 
of  a  DC motor  with  load.  First,  a  PMDC motor  model  is 
developed with a single-input-single-output (SISO) structure, 
taking into consideration the Coulomb friction and Dead Zone 
nonlinearities. Then, the nonlinear model is selected and built 
with  a  Wiener-Hammerstein  structure  for  the  identification 
procedure. Root-mean-square-error method is used to compute 
the error criterion and check the model matching.

II. NONLINEAR SYSTEM IDENTIFICATION

A. General Concepts

System modeling and identification involve the effort 
to describe the dynamic behavior of a given real system by a 
model selected within a set of approximate models [4, 5]. It 
constitutes a diverse and established field in both science and 
engineering  for  analysis  and  control  of  systems.  The 
identification of a plant or system is an approximation of its 
model  from  its  input/output  data  to  find  a  suitable  model 
structure and for determining the best suitable mathematical 
model  [6].  Each  operation  of  system  identification  has  to 
determine a model of a dynamic system, so the executing of 
the identification for each process consists of a series of basic 
steps.  Some of them may be hidden or selected without the 
user being aware of his choice. Clearly, this can result in poor 
or  suboptimal  results  [4,  5].  In  each  session  the  following 
actions should be taken:
1. Collecting  information  about  the  system  (Data 
record): the observed data from input/output of the system to 
obtain its  information,  an excitation that  optimizes  the goal 
within  the  operation  constraints  must  be  generated.  The
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quality of the final results can depend heavily on the collected 
data.
2. Model structure to represent the system: collecting 
the conditions and the nature of the models is  important  to 
look for a suitable model. The choice of the model should be 
carefully handled to contain all of the possible mathematical 
models,  which  are  considered  to  be  useful  to  represent  the 
system. There is a wide variety of possibilities, as:
• Parametric and nonparametric models.
• Linear models and nonlinear models.
• Linear-in-the-parameters  and  nonlinear-in-the-
parameters.
3. Criterion  to select  a  particular  model  in the set 
(goodness of fit): the observed data and a model set have to 
be used to select the optimal model based on the performance 
of the models when the measured data are applied on them.
4. Validating  the  selected  model: when  an  optimal 
model is reached, it must be tested whether this model is good 
enough (test of the validity of the model).   The best  model 
gives  the  smallest  error  or  describes  the  system  within  the 
specified error bounds, which is preferred.

A model may not be as suitable as required. In this 
case,  one  should  go  back  and  repeat  the  steps.  Nonlinear 
system  identification  is  a  useful  tool  especially  with  the 
systems that  contain some degrees  of  nonlinearities.  In  this 
case  a  suitable  system identification  method and  a  suitable 
model  structure  to  face  these  difficult  problems  of 
nonlinearities should be selected.

B. Nonlinear Models for Identification

For studying the behavior of nonlinear systems, it is 
possible to use linear models to approximate their behavior. 
These linear models are easy to study, to understand and to 
build, but in this case the approximate models will be adequate 
for a range of input and out of this range they may lose their 
validity.  Hence,  nonlinear  modeling  is  preferred  for  many 
applications.

The  process  of  mathematical  modeling  consists  of 
some steps that have been discussed in the previous section. In 
selecting a suitable model for system identification, it needs to 
be decided whether a parametric  or nonparametric  model is 
more suitable.  

The  system  with  a  parametric  model  is  described 
using  a  finite  number  of  parameters,  which  are  also  called 
characteristic quantities. It  is possible to build this type of a 
model using a set of mathematical equations and this approach 
is especially useful with linear  models or when using linear 
identification.  In  system  identification,  in  order  to  use  the 
algorithms  of  parameter  estimation,  a  parametric  nonlinear 
model  structure  is  needed.  Depending  on  the  dynamic 
behavior  of  the  plant  and  the  type  and  hardness  of  the 
nonlinearity,  one  of  several  parametric  models  may  be 
preferred.  The  most  common  structures  are  Wiener, 
Hammerstein, and NARMAX model structures. Combinations 
of Wiener and Hammerstein models, which are the Wiener-
Hammerstein and Hammerstein-Wiener models, are also used 
to represent nonlinear systems in relatively simpler forms with 
cascaded linear and nonlinear subsystems [7, 8].

The system with nonparametric  model  is  described 
using measurements of a system function at infinitely many 
number  of  points.  When  there  exists  no  parametric  model 
structure  that  can  describe  the  nonlinear  system,  a 
nonparametric  algorithm  is  proposed  for  recovering  the 

characteristic  from input/output  observations,  which  are  the 
data of the whole system. The infinite Volterra Series model is 
a commonly used nonparametric model structure for nonlinear 
systems [8].  

C. Wiener-Hammerstein Model Structure

The structure of the class of Linear-Nonlinear-Linear 
(LNL)  models,  which  consist  of  a  static  nonlinear  block 
sandwiched  between  two  linear  dynamic  systems,  is  called 
Weiner-Hammerstein structure, which is shown in Figure 2.1. 
The static nonlinearity of the subsystem due to Dead Zone, 
frictions, saturation, or if the sensor have some characteristics 
of nonlinearity.

Figure  2.1. Cascaded  LNL  (Wiener-Hammerstein)  model 
block diagram.

Wiener-Hammerstein model is a useful tool in many 
applications,  such  as  modeling  electromechanical  systems. 
These models are popular because they have a suitable block 
representation, and are easy to implement than other nonlinear 
models (such as neural networks and Volterra models). This 
structure provides a simple parametrization for the cascaded 
linear and nonlinear models.

III. IDENTIFICATION OF WIENER-HAMMERSTEIN MODEL

A. Model Parameterization

Identification  of  cascade  models  has  been  widely 
discussed,  where  they  consist  of  special  and  simple 
formulations and these models are widely useful in a variety 
of  fields.  The  nonlinear  characteristics  of  the  Wiener-
Hammerstein  model  from  nonparametric  approaches  are 
estimated from input and output data. In direct consequence, 
classification of Linear Nonlinear (LN, also known as Weiner 
systems), Nonlinear-Linear (NL, also known as Hammerstein 
systems)  and  LNL  models  can  be  developed.  Once  this 
structure  determination has  been  made,  any of  the  standard 
methods can be used to estimate the appropriate  parameters 
[8].

It is proposed to identify the structure of the class of 
LNL models according  to  Figure  2.1,  where  the  first  linear 
block  denotes  FIR  filter,  the  static  nonlinear  block  denotes 
polynomial  expansion  and  the  second  linear  block  denotes 
ARX structure.  For the first  filter the output  x (t )  of it  can 
written as:

x (t )= ∑
k=0

N g−1

gk . u (t−k )                  (3.1)

where  g k  are  the  impulse  response  series  coefficients. 

Assuming a specific polynomial structure for the nonlinearity, 
z (t )  is given by:

z (t )=∑
p=1

P

λ
p
. x p (t )            (3.2)
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assuming  that  the  nonlinearity  has  no  memory  and  can  be 
modeled sufficiently well by a truncated Taylor series of p th 

order [9]. Substituting (3.1) into (3.2) gives:

z (t )= ∑
p= 1

P

λ
p

.( ∑
k=0

N g−1

g
k

u (t−k ))
p

= ∑
p=1

P

λ p .( ∑
k 1=0

N
g

−1

… ∑
k p=0

N
g

−1

gk 1
…g k p

. ∏
q=1

p

u (t−kq)) (3.3)

Finally, for the second filter the output is given by:

A(q−1) y (t )= ∑
l=0

Nh−1

hl . z (t−l )           (3.4)

If we put (3.3) inside of (3.4) and re-arrange all of the signal 
components, the total output of the LNL system is obtained as:

A(q−1) y (t )=

∑
p= 1

P

λ p .( ∑
l= 0

N h−1

hl .[ ∑
k 1=0

N
g

−1

… ∑
k p=0

N
g

−1

gk 1
…gk p

×∏
q= 1

p

u (t−l−kq )])
 

(3.5)

B. Least-squares Identification of Wiener-Hammerstein 
Model

Least square method (LSM) is an accurate method in 
identification  for  estimation  of  unknown  parameters  of  the 
system  by  defining  an  objective  function;  the  objective 
function would repeat the algorithm for all points of data until 
it  reaches  its  minimum.  At  the  minimum  of  the  objective 
function,  the  values  of  the  parameters  describe  the  real 
structure of the system. Then, the criterion of this method has 
a  unique  solution.  The  linear  regression  of  the  estimated 
output can be written as:

y (t )=φT (t ) θ  (3.6)

where φT (t )  is regression vector at time (t), and θ  is vector 
used to parametrize models. 

φT (t )=[−y (t−1) ,−y (t−2 ) ,… ,− y(t−na ),u (k ) ,…

… ,u( k−l−k q) ,… ,u2 (k ) ,… ,u2 (k −l−kq ),… ,u p (k ) ,…

… ,u p( k−l−k
q) ,… ,u (k ) u (k ) ,u (k ) u ( k−1) ,…

… ,u ( k ) u (k −l−k q) ,… ,u( k−l−k q)u (k−l−kq)]

θ=[ a1 ,a2 ,… ,ana
,s1 ,s2 ,… ,s k−l− kq

,… ,sns
]

The prediction error of linear regression is:

ε (t,θ )=y (t )−φT (t )θ  (3.7)

and the criterion function resulting from:

ε F (t,θ )=L (q ) ε (t,θ )     (3.8)

V
N

(θ,Z N )= 1
N ∑

t=1

N

l (ε F
(t,θ ))=

1
N ∑

t=1

N

l (ε F
(t,θ ))

with (L (q )=1)  and l (q )=
1
2

ε2  is:

V
N

(θ,Z N )= 1
N ∑

t=1

N
1
2

[ y (t )−φT (t )θ ]2  (3.9)

The best fit  for the parameter  estimates can be obtained by 
minimizing this quadratic criterion as follows:

θN
LS =argminV N

(θ,Z N )

=[1
N ∑

t=1

N

φ (t ) φT (t )]
−1

1
N ∑

t=1

N

φ (t ) y (t )
 (3.10)

Recursive Least-squares Algorithm:

Recursive  Least-squares  is  the  most  common 
recursive  identification  and  parameter  estimation  method 
available,  due  to  its  simplicity,  ease  of  application,  and 
accuracy [4, 5]. The algorithm of the Recursive version of the 
identification  method  described  above  is  given  in  the 
following:
- Select a forgetting factor λ , 0< λ  ≤ 1 is introduced.
- Choose initial value of the matrix p.
- Data set (input/output) of the plant  is placed in the 
vector  φ .
- The minimization criterion is:

V
N

(θ,N )= 1
2 ∑

t=1

N

λN −t [ y (t )−φT (t )θ (t )]2

- For minimization of  V N (θ,N )  over  θ , apply the 

following:

p (t )=1
λ

p (t−1)[ I
p
−

φ(t )φT (t ) p (t−1)

λ+φT (t ) p (t−1 )φ (t ) ]
θ (t )=θ (t−1)+p (t )φ (t ) ε (t )

IV. ELECTROMECHANICAL SYSTEM WITH PMDC MOTOR

In  current  research  the  Permanent  Magnet  DC 
(PMDC) motor is  considered,  which is  illustrated in Figure 
4.1. It is aimed to built the suitable model of it with taking into 
account its nonlinearities with a control point of view.

Figure 4.1 A schematic diagram of the PMDC motor.

A. Linear System Dynamics

The  model  of  the  plant  is  developed  taking  into 
account the fact that this model is subject to control, and this 

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT 
DOI: 10.46300/91015.2022.16.5 Volume 16, 2022

E-ISSN: 2074-1308 28



step is important for the control applications. The model of the 
PMDC motor to be built relies on the equations that describe 
its  electrical  and mechanical  sides.  For  the mechanical  side 
equations which are suitable for the system that consists of a 
two-mass structure are derived [10].

First the linear model of PMDC is studied and then 
the  nonlinearities  of  it  such  as  Dead  Zone  and  Coulomb 
Friction and their  effects  on the whole plant  are taken into 
consideration  in  order  to  know  where  these  effects  should 
appear  in  the  model.  For  the  electrical  side  according  to 
Kirchhoff’s laws, it is possible to write the equation as follows 
[3]:

va =Ra ia +La ia +ea                         (4.1)

ea =K mωm                            (4.2)

T m =Km ia                                             (4.3)

where  va  is  the  armature  voltage  which  is  applied  to  the 

motor,  Ra  and  La  are  the  armature  coil  resistance  and 

inductance respectively,  ia  is  the armature current  through 

the motor, ea  is the back electromotive force (emf), K m  is 

the motor constant, T m   is the torque generated by the motor.

Also the equations that describe the mechanical side 
using Newton’s laws of motion are [3]:

J
m( dωm

dt )=−B
m

ω
m
−T

s
+T

m (4.4)

J
L(dωL

dt )=−B
L

ω
L

+T
s
−T

d         (4.5)

T s=K s (θm−θ L)+B s(ωm−ωL)     (4.6)

with
dθ m

dt
=ω

m
,
dθ L

dt
=ω

L

where J m   is the rotor moment of inertia, Bm  is the motor 

viscous friction, T s  is the shaft torque,  J L  is the total load 

moment of inertia, BL  is the load viscous friction coefficient, 

T d  is the disturbance torque, K s  is the shaft elasticity, and 

Bs  is the shaft inner damping coefficient.  θm , θL  are the 

motor and load angular displacements, and ωm , ωL  are the 

motor and load angular velocities, respectively. 

B. Nonlinearities in System Mechanics

The PMDC motor to be controlled has to work with 
high volume demand and a high quality of its performance. In 
this case, it is necessary to take into account all natural effects 
such  as  the  effect  of  connection  between  the  electrical  and 
mechanical  sides,  the connection  with loads,  and the motor 
rotation in two directions. The linear model described above 
with its electrical and mechanical sides is capable of fulfilling 
the  performance  requirements  when  the  mechanical  system 
rotates in one direction. However, if the system speed output 
has  zero  crossings,  the  dead-zone  and  Coulomb  friction 
nonlinearities cannot be neglected [3, 11]. Consequently,  the 

linear  model  will  be  insufficient  in  representing  the system 
behavior accurately for this case.

These  connection  effects  appear  as  nonlinear 
functions  and  characteristics.  For  example  the  Coulomb 
friction effects  appear if  there is  a physical  interface of  the 
connection between two surfaces. The friction and its model 
are discussed in literatures [3, 11, 12]. The general model of 
the Coulomb friction with the viscous friction is given as [3]:

T
f

(ω) =α
0

sgn (ω)+α
1
e
−α2∣ω∣

sgn (ω) (4.7)

where αi>0,i= 0,1,2  and αi∈R . The signum function in the 

equation is defined as [13]:

sgn( ω)={
1      ω>0
0      ω=0
−1      ω< 0}                 (4.8)

Nonlinearity  of  the  Dead  Zone  region  also  is  a 
common effect in the PMDC, which appears in many practical 
systems.  In  an electromechanical  system without a gearbox, 
dead-zone is caused either by the Coulomb friction force from 
of the drive's rotor, or it appears when the motor rotates in two 
directions with very low speeds. The description of Dead Zone 
is given in literature [11], and for an input  v (t )  the output 
w (t ) :

w (t ) =D (v (t ))={
m

r(v (t )−b
r)        v (t )≥b

r

0                   b
l
<v (t ) <b

r

m
l (v (t )−b

l)        v (t )≤b
l
} (4.9)

The model generally assumes that the dead-zone has equal and 
constant rates of change with respect to input in positive and 
negative regions, i.e.  mr =ml =m . The parameters  br ,  bl , 

and  m  are  not  known,  but  their  signs  are  as  follows: 
br>0, bl<0, m>0.  Nonlinearities  (Coulomb  friction  and 

Dead Zone) are graphically described in Figure 4.2.

Figure 4.2 Nonlinearities of the Dead-Zone and Friction

Integrating  the  nonlinear  Coulomb  friction  and  dead-zone 
models into the system, the general system model covers the 
linear and nonlinear system characteristics. The equations of 
system  dynamics  with  the  speed  dependent  friction  are  as 
follows:

J
m( dωm

dt )=−B
m

ω
m
−T

s
+T

m
−T

f (ωm) (4.10)
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J
L(dωL

dt )=−B
L

ω
L

+T
s
−T

d
−T

f (ω L)   (4.11)

The  block  diagram  of  the  system  model  with  linear  and 
nonlinear components is given in Figure 4.3.

V. SIMULATIONS AND EXPERIMENTS

A. Simulation Model and Results 

The  PMDC  motor  model  developed  using  the 
equations presented above is built  as a simulation model in 
Simulink Matlab. The input signal,  which is designed to be 
sufficiently rich and exciting, is given in Figure 5.1.

From the results of the study on the real plant, it is 
found that the effect of the nonlinearities is small especially in 
the connection between the motor and the load; where there is 
no  gear  to  introduce  a  significant  friction  effect.  So,  the 
friction on the output side of the nonlinear model is ignored 
and the difference between the previous model and this model 
without friction effects is studied. It is verified that this model 
is  suitable  to  be  represented  by  a  Weiner-Hammerstein 
structure.  Comparing  the  results  for  these  models  (with 
friction on the output and without fiction on the output)  the 
error  is  observed  to  be  around  3.341e-006.The  Simulink 
model for the PMDC motor with its nonlinearities is simulated 
to get the data for identification. Then these data are used with 
the  algorithm  of  LSM  that  is  coded  using  an  M-file  in 
MATLAB to obtain the identified linear and nonlinear model 
responses. 

For identification, a FIR filter model is used for the first block 
of Weiner-Hammerstein structure. This filter has the structure 
that is suitable for the proposed model structure.

x (t )=B (q−1) u (t ) =b1 u (t−1 )    (5.1)

The  nonlinear  block  has  a  polynomial  structure  of  second 
degree as follows:

z (t ) =λ1 x (t )+λ2 x2 (t )   (5.2)

If we assume that λ1=1  then the previous equation becomes:

z (t ) =x(t )+λ2 x2 (t )  (5.3)

Substituting (5.1) into (5.3) gives:

z (t ) =b1u (t−1)+λ2 b
1

2 u2 (t−1)  (5.4)

The  second  linear  block  has  an  Autoregressive  with 
Exogenous input (ARX) structure given by the following:

A(q−1) y (t ) =D(q−1) z (t )              (5.5)

which can also be written in open form with the selected 
orders as:

[1+a1 q−1+a2 q−2 +a3 q−3 +a4 q−4] y (t )

= [d 0+d 1 q−1 +d 2 q−2] z (t )
  (5.6)

Substituting (5.4) into (5.6) gives:

[1+a1 q−1+a2 q−2 +a3 q−3 +a4 q−4] y (t )

=[d0 +d1 q−1 +d 2 q−2][b1 u (t−1) +λ2 b
12 u2(t−1)]

(5.7)

[1+a1 q−1+a2 q−2 +a3 q−3 +a4 q−4] y (t )

=d
0

b
1

u (t−1)+d
0

λ
2

b
12u

2(t−1 )+d
1

b
1

u (t−2 )

+d 1 λ2b
12 u2 (t−2) +d2 b1 u (t−3 )+d 2 λ2 b

12u
2(t−3 )

(5.8)

Figure 4.3. Block Diagram of the System Model
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Figure 5.1.  Input signal for simulation using Simulink
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The last equation (5.8) of the output can be written in linear 
regression form as following:

y (t )=φT (t ) θ                                           (5.9)

where:

φ (t )=[− y (t−1 ) ,− y (t−2) ,− y (t−3 ) ,− y (t−4) ,

u (t−1 ) ,u(t−2 ) ,u (t−3) ,u2 (t−1 ) ,u2 (t−2) ,u2 (t−3) ]T
(5.10)

θ= [a1,a2,a3,a4,s1,s2,s3,s4,s5,s6 ] (5.11)

For linear identification we selected the following:

φ (t )=[− y (t−1 ) ,− y (t−2) ,− y (t−3 ) ,− y (t−4) ,

u (t−1 ) ,u(t−2 ) ,u (t−3) ,u (t−4 )]T
(5.12)

θ= [a1,a2,a3,a4,b1,b2,b3,b4]  (5.13)

The  results  for  linear  and  proposed  nonlinear  identification 
tests together  with the simulated model output variation are 
illustrated around selected critical time intervals by the graphs 
in Figures 5.2 and 5.3.

 

B. Experimental results

Experimental set-up is shown schematically in Figure 
5.4. Two signal generators are used to supply input signal to 
the armature, which generate sinusoids of different amplitudes 
and frequencies.  The two signals are added to combine as a 
persistently exciting signal for identification [4]. The signals 
are  adjusted  for  low  speed  bidirectional  operation,  which 
permits examination of the system nonlinearities. The motor 
transmits motion via a shaft  that  carries  various transducers 
together with a tacho-generator for speed measurement.

Input-output  data  for  identification  of  the 
electromechanical system are acquired using the experimental 
setup in Figure 5.4. The test signal is selected to be, as given 
in Figure 5.5, for persistence of excitation. The results of the 
experiments, performed using the setup, are illustrated by the 
graphs in Figures 5.6 and 5.7.

Figure 5.4. Experimental Setup for nonlinear identification.

Figure 5.5. Input signal for identification via experiments.

C. Model Verification

Mean  square  error  (MSE)  is  a  commonly  used  error 
criterion for model testing purposes [4, 5, 8]. The criterion is 
given by:

MSE =
1
N
∑
t=1

N

( y (t )− ŷ (t ))
2

      (5.14)
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Figure 5.2.  Output responses for simulated system (I). Solid 
blue: model output, solid red: linear identified model output, 
dotted blue: nonlinear identified model output.
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Figure 5.3.  Output responses for simulated system (II). Solid 
blue: model output, solid red: linear identified model output, 
dotted blue: nonlinear identified model output.
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where ŷ (t )  is the predicted output of the identified model 
and  N is  the  number  of  samples  used  in  the  identification 
process. MSE values for the linear and nonlinear identification 
simulations are calculated for two different input signals and 
tabulated in Table 1. Also the MSE values for the linear and 
nonlinear identification experimental set-up are calculated for 
two different input signals and tabulated in Table 2.
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Figure 5.6.  Output responses for real system (I). Solid blue: 
real  system output, solid red: linear identified model output, 
dotted blue: nonlinear identified model output.

Figure 5.7.  Output responses for real system (II). Solid blue: 
real  system output, solid red: linear identified model output, 
dotted blue: nonlinear identified model output.

Table 1. MSE values for nonlinear and linear identification 
via simulation

MSE, nonlinear 
identification

MSE, linear 
identification

Identification 2.559e-005 0.0005634
Model 

Verification
4.063e-006 0.002264

Table 2. MSE values for nonlinear and linear identification 
via experiment
MSE, nonlinear 
identification

MSE, linear 
identification

Identification 0.004573 0.1105
Model 

Verification
0.06834 0.1933

The results presented in Table 1 clearly show that the 
proposed  nonlinear  identification  procedure  gives  a  better 
result. MSE values in simulations prove that the identification 
results,  in  terms  of  the  selected  error  criterion,  definitely 
improved  with  the  proposed  nonlinear  identification.  The 
improvement  can  also  be  observed  in  Figures  5.2  and  5.3. 
These  figures  prove  the  necessity  of  using  nonlinear 
identification  for  the  systems  which  contain  nonlinear 
characteristics, especially around the operating points close to 
nonlinearities as shown in the figures.
 The  results  presented  in  Table  2  show  that  the 
proposed  nonlinear  identification  procedure  gives  improved 
results  experimentally  as  well.  MSE values  in  experimental 
identification results prove that the identified model error, in 
terms of the selected error criterion, definitely improved with 
the proposed  nonlinear  identification.  The improvement  can 
also be observed in Figures 5.6 and 5.7.

VI. CONCLUSION

This  study applies  the  Wiener-Hammerstein  model 
with  the  LNL  structure  for  describing  the  PMDC  motor 
dynamics.  The  nonlinear  Dead  zone  and  Coulomb  friction 
effects  are  taken  into  account  in  the  model  of  the  PMDC 
motor.  The  proposed  identification  technique  is  based  on 
developing  a  nonlinear  model  with  static  nonlinear  and 
dynamic linear subsystems, which are cascaded in LNL order. 
The model structure permits parametrization of the model for 
identification.  The  LSM  and  RLS  algorithms  are  used  for 
testing  the  model  in  Simulink,  MATLAB  and  in  the 
experimental  setup.  A  different  set  of  data  other  than  the 
identification data is used for model verification. The results 
are demonstrated using graphs and performance is presented 
using a common error criterion. These reveal that the proposed 
approach gives a better result in identification in comparison 
to the conventional linear approach, especially around the low 
speeds  where  the  nonlinearities  in  the  system  are  more 
effective. The identification error also seems to improve with 
the  introduction  of  the  Wiener-Hammerstein  approach  to 
identification.  The  results  of  this  study  have  revealed  that 
modeling a generally nonlinear electromechanical system with 
a  Wiener-Hammerstein  structure,  parameterizing  the  model 
for  identification,  and  obtaining  an  identified  parametric 
nonlinear model covers the nonlinearities better than the linear 
approach.  The  future  work  of  the  study  will  be  on  the 
identification  of  electromechanical  systems  with  hard 
nonlinearities  that  cannot  be  modeled  or  identified  with  a 
linear approach.
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