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Abstract: The concept of homomorphisms on
implication algebra is introduced. The notion of sub
algebras, normal subalgebras in an implication
algebra are investigated. Quotient implication
algebras and kernels in an implication algebra ,and
Homomorphisms and isomorphism theorems are
elaborated.
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I. INTRODUCTION
In the study of the properties of a post algebra,
Epstein and Horn in [2] introduced the concept
of a B-algebra as a bounded distributed lattice
with center B in which , for any a,be A the
largest element a=beB exists with the
propertya A (a=Db)<b. The concept of B-
Almost Distributive Lattice (B-ADL) as an
ADL in which the lattice of all principal ideals
of A is a B-algebra which is initiated by
G.C.Rao ; Berhanu,and et at in[3] investigated
the concepts of fuzzy congruence relations, and
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quotient isomorphisms in almost distributive
fuzzy lattice, and Naveen Kumar Kakuman in
[7] and Joemar in [6] discussed the idea of
homomorphism of BF- algebras. Xu in [9]
proposed the concept of Lattice Implication
Algebras, and discussed their properties; Roh
and et al in [8] investigated some operation on
lattice implication algebras and Abbott in [1]
introduced orthoimplication algebras. Gerima
Tefera D. in [4] initiated the idea of Hilbert
implication algebra and somproperties and also
Gerima T.D in [5]

Subalgebras

introduced the concept of

Normal subalgebras in an
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implication algebra, Yang Xu and et al in [10]
discussed basic properties and structure of

general congruence relations on lattice

implication algebra, and Young Bae June in
[11]
implication and fuzzy associative filters of

initiated the idea of fuzzy positive

lattice implication algebras. In this paper the
concept of Homomorphisms in implication
algebras has been introduced. Throughout this
paper"=" used as a binary operation not as a

logical connectives.

Il. PRELIMINARIES
Definition 2.1. [6] Let A be a distributive lattice
with 0,1 and B, the birkhoff center of A. If for

lL.a=((@=b)=a=bh.
2.1f aeA thena=(b=c)=(anb)=c.
3. IfabeAthea=(b=c)=b=(a=rc).

Definition 2.4.[3] An algebra(A,=,1) of type
(2,0)
following condition holds:

is called implication algebra if the

l.a=a=1forallacA.
2.a=1=1forall ac A
3. 1= a=a,forall ac A

4. a=(b=c)=b= (a=c),forall

a,b,ce A

Definition 2.5. [3] Let A be an implication
algebra. Define a relation"<" on Abya<b if

andonly if a=b=1.
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any a,be A, there exists a greatest element
y e A such that any<b, then A is called a
B-algebra.

Proposition 2.2.[6] Let A be a B-ADL, for any
a,b e A. Then the following holds:

1.0=a=mforall ac A
2a=a=m,forall ac A

3.a=>m=m,orall ae A, mis maximal.

Theorem 2.3.[7] Let A be a B-ADL and
a,b,c € A. Then the following holds :

I1l. PROPERTIES OF HOMOMORPHISM
ON IMPLICATION ALGEBRA

Definition 3.1. Let (A,=, 14) and (B,=, 1g) be
implication algebras. Then a mapping ¢ : A —
B is called a homomorphism in an implication
algebra if ¢(a =A b) =¢(a) =B o(b),

VabeA.

Definition 3.2. Let (A, =, 1) and (B, =, 1g)
implication algebras. Then ahomomorphism in
an implication algebra ¢ : A — B is called
isomorphism if @ is a bijection. If for each b €
B, there exists a € A such that p(a = ¢) = b €

B. Then ¢ is called onto homomorphism.
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If for each a,b,c € A, we have p(a = ¢)=o¢(b =
d) implies a = ¢ = b = d hold, then ¢ is

monomorphism.

Definition 3.3. Let (A,=, 1) be an implication

algebra. Then a non-empty subset S of A is

= 1 a b c |d
1 1 a b c |d
a 1 1 a c |d
b 1 1 1 c |c
c 1 a b 1 |b
d 1 1 a 1 |1

Table 1. Implication Algebra

Then (A,=, 1) is an implication algebra. Here
S;={a, 1} and

S, = {1,a,b} are subalgebras of A.

Theorem 3.4. Let (A,=, 1) be an implication

algebraand ;¢ # S < A. Then the following are

equvivalent:
1. S'is a subalgebra of A.
2.a=>(1=>b),1=>beSs, foranyabesS.

Proof. Let (A,=, 1) be an implication algebra
and S be non-empty subset of A. Assume S is a
subalgebra of A and leta,b, 1 € S. Thena = (1

>b)=a=b,

Sincel=>b=bWehavea=beSSinceSisa

subalgebra of A , and 1 = b = b, by definition
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called a subalgebra of Aifa=Db € S, for any
a,b eS.

Example 3.1. Let A = {l,ab,c.d} be a set
defined by the table 1 above :

of impliction algebra. Hence 1 = b € S.
Therefore 2 holds.

Assume 2 holds. That is for any a,b € S.a = (1
=>b)eSand1l=>beS.Sincca=>b=a=(1
=>(1=Dhb)=a=(1=Db)es.

Hencea= b € S, foranyab € S.
Thus S is asubalgebra of A.

Definition 3.5. Let A be an implication algebra
and let ; ¢#N c A Then N is said to be

normal in A if (x = a) = (y = b) € N, for any

Xx=>y,a=beN.
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Example 3.2. Let A = {0, 1, 2, 3} with 4 as

greatset element defined by the table 2 below:

= 0 1 2 3 4

0 4 1 2 3 4

3 0 1 2 4 4

4 0 1 2 3 4

Table 2. On normal Ideal

Then (A,=, 0, 4) is an implication algebra. Let
N = {0, 4} is normal in A.
Since(0=4)=>@4=>0=4=0=0€ Nand
4=>0=>0=>4)=0=>4=4€N.

Theorem 3.6. Every Normal subset N of an
implication algebra A is a subalgebra of A.

Remark 3.3. The converse of theorem 3.6
doesnot hold. As in example 3.2 N ={l,a}isa

subalgebra of A but it is not normal as a = a,
d=beN.
While(d=>a)=(a=d)=1=d=dé&N.

Lemma 3.4. Let N be a normal subalgebra of an
implication algebra A and let a,o € N . Then a

=DbeNimplythatb = aeN.

Proof. Let N be a normal subalgebra of an

implication algebra A , and let a,b € N with

a=>beN. Sincca=>a=1€ NandN  is

normal
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ba=(a=a=>(b=2a=>@=>b)=(a=a)

€ N, Sincea=a,a=>heN.Henceb=aeN.

A. Quotient Implication Algebras

Lemma 3.5. Let (A,=, 1) be an implication
algebra and let N be a normal sub algebra of A.
Define the relation ~ N on A by a ~ N bif and
onlyifa=b e N, whereab e A.Then ~ N is

an equivalence relation on A.
Proof.

1. Let A be an implication algebra. Then for
a,b,c € A, we have 3.1. hold.

Sincea~Nasoa=>a=1€eN.

Hence ~ N is reflexive.
2.Leta~NbandabeN. Then
a~Nbea=beNb=a=
@=a)=>b=>a=@=b)=(a=>a)eN,
a=>a=la=beN.

Henceb = ae N.Sothat b ~ N a.
Therefore ~ N is symmetric.

Leta,b,ceNandleta~Nbandb ~ Nc. Then

a=>beNand
b=>ceNa=>c=(b=>b)=>(@=c)-=
(b=>a)=>(b=>c)eN.

Hence a ~ N c¢. Therefore ~ N is transitive.

Thus ~ N is an equivalence relation.

Remark 3.6. Let (A,=, 1) be an implication

algebra. We denote the equivalence -class
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containing a by [a]n . That is [a]y = {b € Ala ~
N b} and AN ={[a]n |a € A}

Definition 3.7. Let (A,=, 1) be an implication
algebra and let N be normal subalgebra of an
implication algebra A. Then [a]y = [b]ln=[a =
bln, VabeN.

Remark 3.7. Let A be an implication algebra.
Then[lln={a€ Aa~Nl}={aeAa=1¢€
N}={a€eAa=1=1eN}={a€AlleN}=
N.

Theorem 3.8. Let N be a normal subalgebra of
an impliction algebra A. Then A y is an
implication algebra. Proof Let (A,=, 1) be an
implication algebra and N be normal. If we
define [a]n = [bln = [a = b]n , then the
operation " = " is well defined, since ifa~ N p
and b ~ N g, then a = p,b = g € N implies (a
= b) = (p = q) € N by normality of N. Hence
(@a=Db) ~N(p = q).

Therefore [a = b]n = [p = q]n . To show A s

an implication algebra.
1L[an=[an=[a=a]n=[1]n.
2. [an=[1n=[a=1]n=[1]n-
3 [n=[an=[1=a]n=[a]n.

4. [aln=[b=clhn=[a=b=c)n=[b=(a
=c)n=[b]ln=>[a=c]n.

Hence ( A n ,=, [1]n ) is an implication
algebra. Thus the implication algebra A \ is

called the quotient implication algebra of A by
N.
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Lemma 3.8. Let (A,=, 1) be an implication

algebra . Then the following holds:

1. The right cancellation law holds. That is a =
b=c=bimpliesa=c.

2. 1fa=b=1,thena=Db, foranyab € A.
3.Ifl=a=1=Db,thena=bforanyab € A.
Proof .

Let (A,=, 1) be an implication algebra and let
a,b € A. Then a,b,c € A with

a=b=c=bholds.a=(1=>a)=(b=hb)=>
l=a=0A=b)>@=>b)=0L=b)=>(c=
b), Sincea=>b=c=>b.=(b=>b)=>(1=c)=
l=c=c.

Letabe Aanda=b=1 Thenwe havea=Db
=l=b=b=a=Db=b=bimplies a=b.

3. Letabe Aand1l=a=1=bh. It follows by
definition 1 > a=aand 1 = b = b. As aresult
we geta=Dh.

Definition 3.9. Let (A,=A, 1A) and (B,=B ,

1g ) be implication algebras, and

let ¢ : A — B be homomorphism in an

implication algebra. Then

{a,c € Alp(a =A c) = 1g } is called the kernel
of ¢. Denoted by Kero.

Theorem 3.10. Let N be a normal subalgebra of
an implication algebra A. Then a mapping
v : A — A N given by y(a) = [a]n IS a Surjective

implication homomorphism , and Kery = N.
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Proof. Let N be a normal subalgebra of an
implication algebra A and definey : A — A\
by y(a) = [a]n . Now, y(a = b) = [a = b]n = [a]n
= [bln =7v(a) = v(b).

Hence y is a homomorphism in an implication
algebra. For each [a]y € A N, there exists a € A
such that y(a) = [a]n .

Hence y is an onto homomorphism in an
implication algebra. Therefore v is surjective. K
ery = {a € Afy(@) = [1]n } = {a € Ala ~ N1} =
{a€eAla= 1€ N}

={a€AleN}={a€ Aly(a)=N} =N.

Hence Kery = N. The mapping y discussed here
is called the natural (canonocal) homomorphism

in an implication algebra onto A v .
Theorem 3.11. Let (A, =A, 1) and
(B, =B, 1) be implication algebras and

let ¢ : A = B be a homomorphism in an
implication algebra. Then ¢ is injective if and

only if Kerg = {1p}.

Theorem 3.12 A — B be a

homomorphism in an implication algebra. Then

Let o

Kerg is a normal subalgebra of A.

Proof. Let (A, =A, 1) and (B, =B, 15 ) be
implication algebras and let ¢ : A — B be

homomorphisms in an implication algebras .
Since @(1p) = p(a = a) = ¢p(a) = ¢(a) = 1g 1a
€ Kero.

Hence Kerg # ¢.
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Leta= bx=ye€Kerp. Then p(a=b) =15 =

Pp(x =) = o(a) = ¢(b) = ¢(x) = ¢(y). Since ¢
is @ homomorphism. Which implies that

¢(@) = o) = lg and o(x) = ¢(y) = ls .
Implies that @(a) = @(b) and @(x) = @(y).
Now,p(x = a)=(Yy=>Db)=0ox =2a) = ¢o(y =

b), Since ¢ is homomorphism
=(9(x) = ¢(a)) = (9(y) = ¢(b))
=(e(x) = ¢(2)) = (¢(x) = ¢(a)) = 1 .

Hence (x = a) = (y = b) € Kere. Thus Kerg

is a normal subalgebra of A.

Lemma 3.9. Let¢o: A— Bandy: B — Cbe
homomorphisms in an implication algebra .
Then yep : A —C is also homomorphism in an
implication algebra.

Proposition 3.10. Let ¢ : A — B be a
homomorphism in an implication algebra with
1A and 1g be the greatest element in A and B

respectively . Then ¢(14) = 1g .

Corollary 3.11.

homomorphism in an implication algebra from

If o A — B is a

A into B, then for all a € A, we have ¢(1A= a)
=1lg=> (p(a)
Lemma 3.12. A — B be

homomorphism in an implication algebra from
A into B. Then the following holds:

Let o

1. If N is a subalgebra of A, then @(N) is a
subalgebra of B.

2. If S is a subalgebra of B, then ¢ * (S) is also

a subalgebra of containing Kere.
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3. If N is a normal subalgebra of A and ¢ is
one-to- one, then @(N) is a normal subalgebra.

4. If K is a normal subalgebra of B, then ¢ *

(K) is a normal subalgebra of A.

Proof. Let ¢ : A — B be homomorphism in an
implication algebra from A into B. 1. Let N be a
subalgebra of A. Thena=beN,vVabeNCc
A. Then

o(a=b)=¢(a) = ¢(b) € p(N) S B. Since ¢(a)
€ B ,p(b) € B and ¢ is homomorphism. Implies
that p(a = b) € B.

Hence ¢(N) < B. Therefore ¢@(N) is a

subalgebra of B.

2. Let S € B be a subalgebra of B and c,d € S.
Thenc=>d€S.

Since ¢ *(lg)=¢ T(c=>c)=¢ () >¢ "

(c)=a=a=1a put ¢ -1 (c) = a. Hence ¢ *
(1g) = 1a S Kero.

Now,¢ '(c=>d)=¢0 ()29 *(d=a=b
€Ep (S S A,a=¢ “(c)ando ‘(d)=beg
1 (S) € A. Hence ¢ ' (S) is a subalgebra of A.

. Let N be a normal subalgebra of A and ¢ is

one-to -one . Then by 1 ¢(N) is a subalgebra of
B.

Let a,b,c € @(A). Then there exist X, y, z € A
such that ¢(a) = x,p(b) = yo and

o(c)=2z. If x=y € o), then op(a = b) =
¢(a) = o(b) € p(N).

Also ¢ is one- to -one impliesa = b € N, and

since N is normal in A, we have
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(c=a)=>(c=>Db)eN.

Thus(z = X) = (2 = y) = (9(c) = ¢(a)) = (p(c)
= ¢(b))

=(p(c = a)) = (p(c = b)) =o((c > a) = (c =
b)) € p(N).

Therefore ,(N) is normal subalgebra of @(A).

Let K be a normal subalgebra of B by 2 ¢ ~* (K)
is a subalgebra of A.

LetabceA. Ifa=be ¢ *(K), then p(a = b)
= ¢(a) = ¢o(b) € K Since ¢ is homomorphism.

Since K is normal subalgebra of B and ¢(c) €
Bp((c=>a)=>(c=>b)=¢(c=>a)=o(c=>Dh)
Since ¢ is homomorphism =(p(c) = ¢(a)) =
(p(c) = o(b)) € K. Since ¢ is homomorphism

in an implication algebra.

Hence c = a) = (c = b) € ¢ ' (K). Thus ¢ *

(K) is a normal subalgebra of A.
Theorem 3.13. Let (A,=A, 14) and
(B,=B, 1) be implication algebras and

let ¢ : A — B be a homomorphism from A onto

B. Then A k « is isomorphic to B.

Proof. Let ¢ : A — B be ahomomorphism in
an inplication algebra. We need to show A K
er¢p ~= Imo. Since K er¢ is normal subalgebra
of A, we have A K ero is a quotient implication
algebra by lemma 3.12 Ime is an implication

algebra.

Let Kerg = N. Then define f: Ay — Ime by f
([a]ln ) = o(a). Now, let [a]n , [D]n € AN . Then
f ([aln ) = ¢(a) and £ ([b]n ) = @(b). So that f([a
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= bln) =g(a=b)=¢(a) = g(b)=f([aln) = f
([oln ).

implication algebra.

Hence f is ahomomorphism in an
Also set f([a]n) = f ([bIn) = o(a) = ¢(b) = ¢
~lo(a) = ¢ ~lg(b)

=>a=b=[an=[b]n.

Thus f is monomorphism in an implication

algebra. Moreover , let b € Img, then there
exists a € A such that p(a) =b =T ([a]n ).

Hence f is epimorphism. Thus f is isomorphism
in an implication algebra. Consequentely A kero
~=B.

Theorem 3.14. (Second isomorphism theorem)
Let N and K be normal subalgebras of an
implication algebra A. Then N N NK ~= NK K.

Proof. Let N and K be normalsubalgebras of an
implication algebra A. Then define ¢ : N — NK
Kbyo¢(a)=ak. foranya € N.

Leta, b € N. If a= b, then

a>b=a=>a=1o€e K. Thatisa~ Kb. Thus a
k=bk. So that p(a) =a k =b k= ¢(b).

Hence ¢(a) = ¢@(b). This shows that ¢ is well
defined. Moreover,

ela=>b)=a=>by=ax=>Abyw=09() 2A
o(b).

Therefore ¢ is homomorphism in an implication

algebra. If c k e NK K, then
c=a=(1l=Db)forsomeaeN,beK.

Sothatwegetcy=a=>(1=>b)x=ax=>Aby

= ¢(c). Hence ¢ is onto.
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Thus by theorem 3.13. ~=nk Kk .
Furthermore,Kerp = {a € N:op(a)=(1 = (1 =
Nk=1c}={aeN:ax=1k}={aeN:a~
Ki} ={faeN:a=1=a€K}=NnNK
Therefore NK NN ~=NKK.

N Kerg

Lemma 3.13.
subalgebras of an implication algebra A such
that N € K. Then K N is normal subalgebra of
AN.

If N and K are normal

Proof. Let (A=A, 1a) be an implication
algebra and let N and K be normalsubalgebras
of an implication algebra A such that N € K.
Then KNS AN.Now, 1N € KN Sincele

K. Thus K N is not empty.

ifaNbNeKNandbNeKNandaN € K
N.Hencea=>beK Thusa=bNeKN.

Therefore K N is a sub algebra.

AgainletaN,bN,cNeAN.IfaN=AbN
EKN,thena=>bNeKNanda=>bN=aN
=>AbNeEeKN.Hencea=he K. Since Kis

normal subalgebra in A,

(c=>a)=>((Cc=>beK Thus(c=a)=>(c=
byNEKN.

Sothat (cN=>AaN)=>A(cN=>AbN)=(c
2>aN=>A(C=>b)N=(c=a)=>(c=Db)N
€ KN.

Therefore , K N is normal subalgebrain AN .

Theorem 3.15 (Third isomorphism theorem). If
N and K are normal subalgebras of an
implication algebra A such that N € K , then

(AIN) (K/N) ~= A K.
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Proof . Let A be an implication algebra and let
N and K be normal subalgebra of an implication

€An.Letan,bnEAN.Ifany=an,thena
~NDb. Thatisa=beNCcK Thusa~Kb
andaK=bK.Hencep(an)=aK=bK=¢(
b N ). Therefore ¢ is well defined. Moreover,p
is ahomomorphism , since @( a yn A by ) = ¢(
a=>bN)=a=>bK=aK=AbK=¢(ay)
=>Ao¢o(by) IfaKeAK,thenaN€eAN
since N € K, and ¢( an ) =aK . Thus ¢ is onto.
By theorem 3.13 (A/N) Kergp ~= A K . K erp =
{aNeAN:p(aN)=1K}={aNeAN:a
K=1K}

={aNeAN:a~Kl}={aNeAN:a=1
=>a€eK}=KN.

Therefore (A/N) (K/N) ~=AK.

IV. CONCLUSION
The concepts of sub algebras, normal
subalgebras in an implication algebra have been
introduced. The kernel and image of
homomorphism in an implication have been
characterized. In addition the homomorphisim
in an implication algebra has been introduced
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algebra A such that N © K. Then define the
function: Ay —> Akbyo(an)=ak,Van
and basic homomorphism theorems like first
isomorphism theorem, second isomorphism
theorem, and third isomorphism theorems have
been discussed in an implication algebra with

their proofs.
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