
I. INTRODUCTION 
ET C  be a nonempty subset of a Hilbert space X . Recall 
that a mapping CCT →:  is said to be k -strictly pseudo-

contractive if there exists a constant 0,1)[∈k  such that 
 

.,,)()( 222 CyxyTIxTIkyxTyTx ∈∀−−−+−≤−
 

    A point Cx ∈  is called a fixed point of T  if Txx = . We 
will denote the set of fixed points of T  by )(TF . Note that 
the class of k -strictly pseudo-contractions includes the class 
of nonexpansive mappings T  on C  as a subclass. That is, T  
is nonexpansive if and only if T  is 0 -strictly pseudo-
contractive. The mapping T  is also said to be pseudo-
contractive if 1=k  and T  is said to be strongly pseudo-
contractive if there exists a constant (0,1)∈λ  such that 

IT λ−  is pseudo-contractive. Clearly, the class of k -strictly 
pseudo-contractive mappings is the one between classes of 
nonexpansive mappings and pseudo-contractive mappings. 
Also we remark that the class of strongly pseudo-contractive 
mappings is independent from the class of k -strictly pseudo-
contractive mappings. Recently, many authors have been 
devoting the studies on the problems of finding fixed points 
for k -strictly pseudo-contractive mappings (see, e.g., [1]- [3]). 
    

   We define the concept of k -strictly pseudo-contractive 
mapping in a CAT(0) space as follows. 
    
   Let C  be a nonempty subset of a CAT(0) space X . A 
mapping CCT →:  is said to be k -strictly pseudo-
contractive if there exists a constant 0,1)[∈k  such that 
 

( )( ) .,,,(),),(),( 222 CyxTyydTxxdkyxdTyTxd ∈∀++≤  (1) 
    
   Acedo and Xu [4] introduced a cyclic algorithm in a Hilbert 
space. We modify this algorithm in a CAT(0) space. 
    
   Let Cx ∈0  and { }nα  be a sequence in ],[ ba  for some 

(0,1), ∈ba . The cyclic algorithm generates a sequence { }nx  
in the following way: 
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or, shortly, 
 

      
0,,)(1= ][1 ≥∀−⊕+ nxTxx nnnnnn αα            (2) 

 
where in TT =][ , with ni = ),(modN 10 −≤≤ Ni . By taking 

TT n =][  for all n  in (2), we obtain the Mann iteration in [5]. 
    
   In this paper, motivated by the above results, we prove the 
demiclosedness principle for k -strictly pseudo-contractive 
mappings in a CAT(0) space. Also we present the strong and ∆ -
convergence theorems of the cyclic algorithm and the modified 
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Halpern iteration which is introduced for Hilbert space by Hu 
[6] for such mappings in a CAT(0) space. 

II. PRELIMINARIES ON CAT(0) SPACE 
   A metric space X  is a CAT(0) space if it is geodesically 
connected and if every geodesic triangle in X  is at least as 
‘thin’ as its comparison triangle in the Euclidean plane. It is 
well known that any complete, simply connected Riemannian 
manifold having non-positive sectional curvature is a CAT(0) 
space. Other examples include Pre-Hilbert spaces (see [7]), 
Euclidean buildings (see [8]), R -trees (see [9]), the complex 
Hilbert ball with a hyperbolic metric (see [10]) and many 
others. For a throughout discussion of these spaces and of the 
fundamental role they play in geometry, we refer the reader to 
Bridson and Haefliger [7]. 
   Fixed point theory in a CAT(0) space has been first studied by 
Kirk (see [11], [12]). He showed that every nonexpansive 
mapping defined on a bounded closed convex subset of a 
complete CAT(0) space always has a fixed point. Since then the 
fixed point theory in a CAT(0) space has been rapidly 
developed and many papers have appeared (see e.g., [13]-
[16]). It is worth mentioning that fixed point theorems in a 
CAT(0) space (specially in R -trees) can be applied to graph 
theory, biology and computer science (see, e.g., [9], [17]- 
[20]). 
   Let ),( dX  be a metric space. A geodesic path joining 

Xx ∈  to Xy ∈  (or more briefly, a geodesic from x  to y ) is 
a map c  from a closed interval R⊂][0, l  to X  such that 

,=(0) xc  ylc =)(  and ( ( ), ( )) =' 'd c t c t t t−  for all 

]0,[, ltt ' ∈ . In particular, c  is an isometry and lyxd =),( . 
The image of c  is called a geodesic (or metric) segment 
joining x  and y . When it is unique, this geodesic is denoted 
by ],[ yx . The space ),( dX  is said to be a geodesic space if 
every two points of X  are joined by a geodesic and X  is said 
to be a uniquely geodesic if there is exactly one geodesic 
joining x  to y  for each Xyx ∈, . 
   A geodesic triangle ),,( 321 xxx∆  in a geodesic metric space 

),( dX  consist of three points in X  (the vertices of ∆ ) and a 
geodesic segment between each pair of vertices (the edges of 
∆ ). A comparison triangle for geodesic triangle ),,( 321 xxx∆  

in ),( dX  is a triangle ),,(=),,( 321321 xxxxxx ∆∆  in the 

Euclidean plane 2R  such that ),(=),(2 jiji xxdxxd
R

 for 

{1,2,3}, ∈ji . Such a triangle always exists (see [7]). 
   A geodesic metric space is said to be a CAT(0) space [7] if all 
geodesic triangles of appropriate size satisfy the following 
comparison axiom: 
    
   Let ∆  be a geodesic triangle in X  and ∆  be a comparison 
triangle for ∆ . Then, ∆  is said to satisfy the CAT(0) 
inequality  if for all ∆∈yx,  and all comparison points 

∆∈yx, , 

).,(),( 2 yxdyxd
R

≤
 

 
   If 21,, yyx  are points in a CAT(0) space and if 0y  is the 
midpoint of the segment ],[ 21 yy , then the CAT(0) inequality 
implies that 
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This is the (CN) inequality of Bruhat and Tits [21]. In fact (see 
[7], p.163), a geodesic metric space is a CAT(0) space if and 
only if it satisfies the (CN) inequality. It is worth mentioning 
that the results in a CAT(0) space can be applied to any 

)(kCAT  space with 0≤k  since any )(kCAT  space is a 

)(
'

kCAT  space for every kk
'

≥  (see [7], p.165). 
   Let Xyx ∈,  and by Lemma 2.1 (iv) of [13] for each 

0,1][∈t , there exists a unique point [ ]yxz ,∈  such that 
 

).,()(1=),(),,(=),( yxdtzydyxtdzxd −             (3) 
 
   From now on, we will use the notation ( ) tyxt ⊕−1  for the 
unique point z  satisfying (3). We now collect some 
elementary facts about CAT(0) spaces which will be used in 
sequel the proofs of our main results. 
 
   Lemma 1  Let X  be a CAT(0) space. Then 
(i) (see [13], Lemma 2.4) for each Xzyx ∈,,  and 0,1][∈t , 
one has 
 

( ) ),,(),()(1,)(1 zytdzxdtztyxtd +−≤⊕−  
 

 (ii) (see [13], Lemma 2.5) for each Xzyx ∈,,  and 0,1][∈t , 
one has 
 

( ) .),()(1),(),()(1,)(1 2222 yxdttzytdzxdtztyxtd −−+−≤⊕−
 

III.  DEMICLOSEDNESS PRINCIPLE FOR k -STRICTLY PSEUDO-
CONTRACTIVE MAPPINGS 

   In 1976 Lim [22] introduced a concept of convergence in a 
general metric space setting which is called ∆ -convergence. 
Later, Kirk and Panyanak [23] used the concept of ∆ -
convergence introduced by Lim [22] to prove on the CAT(0) 
space analogs of some Banach space results which involve 
weak convergence. Also, Dhompongsa and Panyanak [13] 
obtained the ∆ -convergence theorems for the Picard, Mann 
and Ishikawa iterations in a CAT(0) space for nonexpansive 
mappings under some appropriate conditions. 
   We now give the definition and collect some basic properties 
of the ∆ -convergence. 
   Let X  be a complete CAT(0) space and { }nx  be a bounded 
sequence in X . For Xx ∈ , we set 
 

INTERNATIONAL JOURNAL OF PURE MATHEMATICS 
DOI: 10.46300/91019.2022.9.7 Volume 9, 2022

E-ISSN: 2313-0571 25



{ } suplim=),( ∞→nnxxr  ).,( nxxd  
 

The asymptotic radius { })( nxr  of { }nx  is given by 
 

{ } { } }.:),({inf=)( Xxxxrxr nn ∈  
 

The asymptotic center { })( nxA  of { }nx  is the set 
 

{ } { } { })}.(=),(:{=)( nnn xrxxrXxxA ∈  
 
It is known that in a complete CAT(0) space, { })( nxA  consists 
of exactly one point (see [24], Proposition 7). 
 
   Definition 1 ([22], [23]) A sequence { }nx  in a CAT(0) space 
X  is said to be ∆ -convergent to Xx ∈  if x  is the unique 

asymptotic center of { }nu  for every subsequence { }nu  of 
{ }nx . In this case, we write ∆ - xxnn =lim ∞→  and x  is called 
the ∆ -limit of { }.nx   
    
   Lemma 2  
 
i) Every bounded sequence in a complete CAT(0) space always 
has a ∆ -convergent subsequence. (see [23], p.3690) 
 
ii) Let C  be a nonempty closed convex subset of a complete 
CAT(0) space and let }{ nx  be a bounded sequence in C . Then 
the asymptotic center of }{ nx  is in C . (see [25], Proposition 
2.1)  
    
   Lemma 3 ([13], Lemma 2.8) If }{ nx  is a bounded sequence 
in a complete CAT(0)  space with { }xxA n =})({ , }{ nu  is a 

subsequence of }{ nx  with { }uuA n =})({  and the sequence 
{ }),( uxd n  is convergent then .= ux   
    
   Let C  be a closed convex subset of a CAT(0) space X  and 

}{ nx  be a bounded sequence in .C  We denote the notation 

       
{ } )(inf=)(� xwwx

Cx
n ΦΦ⇔

∈
                         (4) 

where ).,(suplim=)( xxdx nn ∞→Φ  
   Nanjaras and Panyanak [26] gave a connection between the 
" " convergence and ∆ -convergence. 
    
   Proposition 1 ([26], Proposition 3.12) Let C  be a closed 
convex subset of a CAT(0) space X  and }{ nx  be a bounded 
sequence in C . Then ∆ - pxnn =lim ∞→  implies that 
{ } .� pxn   
   The purpose of this section is to prove demiclosedness 
principle for k -strictly pseudo-contractive mappings in a 
CAT(0)  space by using the convergence defined in (4). 
 

   Theorem 1 Let C  be a nonempty closed convex subset of a 
complete CAT(0) space X  and CCT →:  be a k -strictly 

pseudo-contractive mapping such that 




∈

2
10,k  and 

∅≠)(TF . Let { }nx  be a bounded sequence in C  such that 
∆ - wxnn =lim ∞→  and 0=),(lim nnn Txxd∞→ . Then wTw = .  
    
   Proof By the hypothesis, ∆ - wxnn =lim ∞→ . From 
Proposition 1, we get { } wxn  . Then we obtain 

{ } }{=)( wxA n  by Lemma 2 (ii) (see [26]). Since 
0,=),(lim nnn Txxd∞→  then we get 

 
),(limsup=),(limsup=)( xTxdxxdx n

n
n

n ∞→∞→
Φ       (5) 

 
for all Cx ∈ . In (5) by taking Twx = , we have 
 

22 ),(limsup=)( TwTxdTw n
n ∞→

Φ  

{ }22 )),(),((),(limsup TwwdTxxdkwxd nnn
n

++≤
∞→

 

( )22 ),(),(limsup),(limsup TwwdTxxdkwxd nn
n

n
n

++≤
∞→∞→

 
22 ),()(= Twwkdw +Φ                                             (6)  

 
The (CN) inequality implies that 
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Letting ∞→n  and taking superior limit on the both sides of 
the above inequality, we get 
 

       .),(
4
1)(

2
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2
1

2
222

2

TwwdTwwTww
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

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Since { } }{=)( wxA n , we have
 

.),(
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)( 222

2
2 TwwdTwwTwww −Φ+Φ≤
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
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which implies that 
 

            .)(2)(2),( 222 wTwTwwd Φ−Φ≤                (7) 
 
By (6) and (7), we get 0.),()2(1 2 ≤− Twwdk  Since 






∈

2
10,k , then we have wTw =  as desired.  

 
   Now, we prove the ∆ -convergence of the cyclic algorithm 
for k -strictly pseudo-contractive mappings in a CAT(0) space. 
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   Theorem 2 Let C  be a nonempty closed convex subset of a 
complete CAT(0) space X  and 1≥N  be an integer. Let, for 
each 1,0 −≤≤ Ni  CCTi →:  be ik -strictly pseudo-

contractive mappings for some .
2
1<0 ik≤  Let 

{ }1;0max= −≤≤ Nikk i , { }nα  be a sequence in ],[ ba  for 

some (0,1), ∈ba  and ak < . Let ∅≠∩ − )(= 1
0= i

N
i TFF . For 

Cx ∈0 , let { }nx  be a sequence defined by (2). Then the 
sequence { }nx  is ∆ -convergent to a common fixed point of 

the family { } 1
0=
−N

iiT .  
 
   Proof  Let .Fp ∈  Using (1), (2) and Lemma 1, we have 
 

2
][

2
1 ),)(1(=),( pxTxdpxd nnnnnn αα −⊕+  

2
][

2 ),()(1),( pxTdpxd nnnnn αα −+≤
          

 

   2
][ ),()(1 nnnnn xTxdαα −−  

{ }2
][

22 ),(),()(1),( nnnnnnn xTxkdpxdpxd +−+≤ αα  

    2
][ ),()(1 nnnnn xTxdαα −−  

2
][

2 ),())((1),(= nnnnnn xTxdkpxd −−− αα
                      

(8) 

.),( 2pxd n≤  

 This inequality guarentees that the sequence { }nx  is bounded 
and ),(lim pxd nn ∞→  exists for all .Fp ∈  By (8), we also 
have 
 

 [ ]2
1

22
][ ),(),(

))((1
1),( pxdpxd

k
xTxd nn

nn
nnn +−

−−
≤

αα
 

 [ ].),(),(
))((1

1 2
1

2 pxdpxd
kab nn +−

−−
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Since ),(lim pxd nn ∞→  exists, we obtain 

0=),(lim ][ nnnn xTxd∞→ . To show that the sequence { }nx  is 

∆ -convergent to a common fixed point of the family { } ,1
0=
−N

iiT  
we prove that 
 

{ } { }
{ } FuAx n

nxnu
nw ⊆∪

⊆
)(=)(ω  

 
and )( nw xω  consists of exactly one point. Let ).( nw xu ω∈  
Then, there exists a subsequence { }nu  of { }nx  such that 

{ } { }uuA n =)( . By Lemma 2, there exists a subsequence { }nv  
of { }nu  such that ∆ - Cvvnn ∈∞→ =lim . By Theorem 1, we 
have Fv ∈  and by Lemma 3, we have Fvu ∈= . This shows 
that Fxnw ⊆)(ω . Now we prove that )( nw xω  consists of 
exactly one point. Let { }nu  be a subsequence of { }nx  with 

{ } { }uuA n =)(  and let { } { }xxA n =)( . We have already seen 

that vu =  and Fv ∈ . Finally, since ( ){ }vxd n ,  is convergent, 
we have Fvx ∈=  by Lemma 3. This completes the proof. 

IV.  THE STRONG CONVERGENCE THEOREM FOR THE MODIFIED 
HALPERN ITERATION 

   In [6], Hu introduced a modified Halpern iteration. We 
modify this iteration in CAT(0) spaces as follows. 
   For an arbitary initial value Cx ∈0  and a fixed anchor 

Cu ∈ , the sequence { }nx  is defined by 
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nTxxy
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α
γ

α
β

αα
 (9) 

 
where { } { } { }nnn γβα ,,  are three real sequences in (0,1)  
satisfying 1=nnn γβα ++ . Clearly, the iterative sequence 
(9) is a natural generalization of the well known iterations. 
 
(i) If we take 0=nβ  for all n  in (9), then the sequence (9) 
reduces to the Halpern’s iteration in [27]. 
 
(ii) If we take 0=nα  for all n  in (9), then the sequence (9) 
reduces to the Mann iteration in [5]. 
 
   In this section, we prove the strong convergence of the 
modified Halpern’s iteration in a CAT(0) space. 
   Recall that a continous linear functional µ  on ∞ , the 
Banach space of bounded real sequences, is called a Banach 
limit if 1=(1,1,...)= µµ  and )(=)( 1+nn aa µµ  for all 

{ } ∞
∞

= ⊂ 1nna . 
 
   Lemma 4  (see [28], Proposition 2) Let { } ∞∈,..., 21 aa  be 
such that 0)( ≤naµ  for all Banach limits µ  and 

0.)(suplim 1 ≤−+∞→ nnn aa  Then, 0.suplim ≤∞→ nn a   
    
   Lemma 5  Let C  be a nonempty closed convex subset of a 
complete CAT(0) space X , CCT →:  be a k-strictly pseudo-
contractive mapping with 0,1)[∈k  and CCS →:  be a 
mapping defined by ( ) ,1= TzkkzSz −⊕  for Cz ∈ . Let Cu ∈  
be fixed. For each [ ]0,1∈t , the mapping CCSt →:  defined 
by 
 

( ) ( ) ( ) ,for ),1(1=1= CzTzkkzttuSzttuzSt ∈−⊕−⊕−⊕  
 
has a unique fixed point Czt ∈ , that is, 
 

( ) ).(1=)(= tttt zSttuzSz −⊕  (10) 
     
   Proof As it has been proven in [29], if T  is a k-strictly 
pseudo-contractive mapping with 0,1),[∈k  S  is a 
nonexpansive mapping such that )(=)( TFSF . Then, from 
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Lemma 2.1 in [14], the mapping tS  has a unique fixed point 
.Czt ∈   

    
   Lemma 6  Let TCX ,,  and S  be as in Lemma 5. Then, 

∅≠)(TF  if and only if }{ tz  given by (10) remains bounded 
as 0→t . In this case, the following statements hold: 
1) }{ tz  converges to the unique fixed point z  of T  which is 
nearest to u , 
2) 2 2 ( , )( , ) nu xd u z dµ≤  for all Banach limits µ  and all 
bounded sequences }{ nx  with 0.=),(lim nnn Txxd∞→   

 
   Proof  If ,)( ∅≠TF  then we have .)(=)( ∅≠TFSF  Also, 
if 0=),(lim nnn Txxd∞→ , we obtain that 
 

( ) )1,(=),( nnnnn TxkkxxdSxxd −⊕  
    .  as0),()(1 ∞→→−≤ nTxxdk nn  

 
Thus, from Lemma 2.2 in [14], the rest of the proof of this 
lemma can be seen.  

 
   The following lemma can be found in [30]. 

 
   Lemma 7  (see [30], Lemma 2.1) Let }{ na  be a sequence of 
non-negative real numbers satisfying the condition 
 

0,,)(11 ≥∀+−≤+ naa nnnnn σγγ  
 
where }{ nγ  and }{ nσ  are sequences of real numbers such 
that 

(1) [ ]0,1}{ ⊂nγ  and ,=
1=

∞∑∞
nn

γ  

(2) either 0suplim ≤∞→ nn σ  or .<
1=

∞∑∞
nnn

σγ  

Then, 0.=lim nn a∞→   
 

   We are now ready to prove our main result. 
 

   Theorem 3 Let C  be a nonempty closed convex subset of a 
complete CAT(0) space X  and CCT →:  be a k -strictly 

pseudo-contractive mapping such that 1
1

<0 <
−

≤
n

nk
α

β
 and 

∅≠)(TF . Let { }nx  be a sequence defined by (9). Suppose 
that { },nα  { }nβ  and { }nγ  satisfy the following conditions: 
 
C1) lim 0=nn α∞→ ,  

C2) ,=
1=

∞∑∞
nn

α  

C3)  lim knn ≠∞→ β  and lim 0≠∞→ nn γ .. 
 
Then the sequence { }nx  converges strongly to a fixed point of 
T .  

 

   Proof  We divide the proof into three steps. In the first step 
we show that { } { }nn yx ,  and { }nTx  are bounded sequences. In 
the second step we show that 0.=),(lim nnn Txxd∞→  Finally, 
we show that { }nx  converges to a fixed point )(TFz ∈  which 
is nearest to u . 
First step: Take any )(TFp ∈ , then, from Lemma 1 and (9), 
we have 
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Also, we obtain 

 

( ) ( ) 222
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1
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+

2),( pudnα≤  
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( ) 222 ),(
1

),(1),(= nn
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n
nnnn Txxdkpxdpud 





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
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( ) 2),(1 nnn yudαα −−                                                      (11) 

( )
{ }.),(,),(max

),(1),(
22

22

pxdpud

pxdpud

n

nnn

≤

−+≤ αα
 

 
By induction, 
 

{ }.),(,),(max),( 2
0

22
1 pxdpudpxd n ≤+  

 
This proves the boundedness of the sequence { }nx , which 
leads to the boundedness of { }nTx  and { }.ny  
Second step: In fact, we have from (11) (for some appropriate 
constant 0>M ) that 
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and hence the desired result is obtained by the conditions (C1) 
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Third step: Using the condition (C1) and (13), we obtain 
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Also, from (13), we have 
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Let ,lim= 0 tt zz →  where tz  is given by (10) in Lemma 5. 
Then, z  is the point of )(TF  which is nearest to u . By 

Lemma 6 (2), we have 0))),(),(( 22 ≤− nxudzudµ  for all 
Banach limits µ . Moreover, since 0,=),(lim 1 nnn xxd +∞→  
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If we take 22 ),(),(= nn xudzuda −  in Lemma 4, then we 
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It follows from the condition (C1) and (14) that 
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By (15) and (16), we have 
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We observe that 
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It follows from the condition (C2) and (17), using Lemma 7, 
that 0=),(lim zxd nn ∞→ . This completes the proof of 
Theorem 3.  
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   We obtain the following corollary as a direct consequence of 
Theorem 3. 

 
   Corollary 1 Let CX ,  and T  be as Theorem 3. Let { }nα  be 
a real sequence in ( )0,1  satisfying the conditions (C1) and 
(C2). For a constant ,1)(k∈δ , an arbitary initial value 

Cx ∈0  and a fixed anchor ,Cu ∈  let the sequence { }nx  be 
defined by 
      ( ) 0.,)(1)(1=1 ≥∀−⊕−⊕+ nTxxux nnnnn δδαα    (18) 
Then the sequence { }nx  is strongly convergent to a fixed point 
of T .  

 
   Proof If, in proof of Theorem 3, we take δαβ )(1= nn −  
and ))(1(1= δαγ −− nn , then we get the desired conclusion. 
 
   Remark 1 The results in this section contain the strong 
convergence theorems of the iterative sequences (9) and (18) 
for nonexpansive mappings in a CAT(0) space. Also, these 
results contain the corresponding theorems proved for these 
iterative sequences in a Hilbert space.  
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