On General Product of Two Finite Cyclic Groups one being of order 7 (Induced by = (1) (2) (3) (4) (5) (6) (7))

S.F. El-Hadidi

Math Department, Faculty of Science, Helwan University, Cairo, Egypt

Abstract—In this paper we find the general product induced by the semi special permutation $\pi = (1)(2)(3)(4)(5)(6)(7)$. That is the general products of two finite cyclic groups in which one of order 7 and the other is of order m these general products can be described in terms of numerical parameters.

Keywords- semi special permutations, general product

I. INTRODUCTION

f A, B are two subgroups of a group G then we say that G is the general product of A, B if and only if:

(1) G = AB

(2) A, B has no elements in common other than the identity i.e. $A \bigcap B = \{e\}$

Now if A = {a} is a cyclic group of order m, B = {b} is a cyclic group of order n then there exist corresponding to G two semi special permutations π , ρ where π on [n], ρ on [m] such that

$$a^{y}b^{x} = b^{\pi^{y}x}a^{\rho^{x}y}, x \in [n], y \in [m] \quad \dots (1)$$

$$\pi^{m}x \equiv x (mod \ n), x \in [n] \quad \dots (2)$$

 $\rho^n y \equiv y \pmod{m}, y \in [m] \qquad \dots (3)$ Where [c] demote to the set of dements [1, 2, 3, ..., c]

Definition: (Semi special permutation) A permutation π on [c] is said to be semi special on [c] iff π (c) = c,

 $\pi_z(x) = \pi(x+z) - \pi z \pmod{c}, y \in [c]$ is a power depending on z of π

Theorem A:

(i)
$$a^m b^x = b^x a^m, x \in [n]$$
(4)

(ii)
$$a^{y}b^{n} = b^{n}a^{y}, y \in [m]$$
(5)

Theorem B:

- (i) The order of π divides *m* i.e. if e is the orders of π then m is a multiple of ℓ .
- (ii) There exist a number λ , $(\lambda, \frac{m}{\ell}) = 1$ thus that

 $a^{\ell}b = ba^{\ell\lambda}, \ell\lambda^{\mu} \equiv \ell \mod m \ldots$ (6) Where μ is the g.c.d of all $\nu - \nu$; ν, ν are any numbers of the principal cycle of π .

(iii)
$$a^{\ell}b^{\mu} = b^{\mu}a^{\ell}$$
.

We know that $\pi = (1)(2)(3)(4)(5)(6)(7)$ is a semi special permutation on [7]

§1- The general product induced by π

Theorem 1.1: the defining relation of the general product of *G* corresponding to

$$\pi = (1)(2)(3)(4)(5)(6)(7) \text{ is}$$

$$G = \{a, b; a^m = b^7 = e, ab = ba^r\} \dots \dots \dots (7.1)$$

$$r^7 \equiv 1 \pmod{m} \dots \dots \dots (7.2)$$

The converse is also true i.e. for any r satisfying (7.2) then any group G generated by a and b satisfying (7.1) is the general product of $\{a\}, \{b\}$.

Proof:

Assume that the general product of G exist, from the equation $a^{y}b^{y} = b^{\pi^{y}x}a^{\rho^{x}y}, x \in [7], y \in [m]$, with y=1 we get $ab^{x} = b^{\pi^{1}x}a^{\rho^{x}1}, x = 1, 2, 3, 4, 5, 6, 7$ put x=1 then we have $ab = b^{\pi^{1}}a^{\rho^{1}}$

let us write
$$\rho 1 = r$$
 then $ab = ba^r$.

$$ab^2 = abb = ba^rb = baaa...ab$$

$$ab^{2} = b^{2}a^{T^{2}}$$
 and so by induction we get
 $ab^{7} = b^{7}a^{T^{7}}$ (8)
From theorem A with $n = 7, y = 1$
we have $ab^{7} = b^{7}a$ (9)

From 8, (9) we get $r^7 \equiv 1 \pmod{m}$ and so (7.2) follows. Also we notice that $\{a\}$ is of order m and $\{b\}$ is of order 5 then 7.1 is the required defining relation of G. The converse is also true to do this let G be a group generated by a, b with the defining relation (7.1) and satisfying the condition (7.2) and let $x = \{0, 1, 2, 3, 4, 5, 6\}$, $y = \{0, 1, 2, ..., m-1\}$ and let H be the set of all ordered pairs (x, y) with $x \in X, y \in Y$ with binary operation * defined on H as follows:

$$(x, y) * (x', y') = (x'', y'')$$
 such that
 $x'' = x + x' \pmod{7}$

 $y'' = r^{x'}y + y' \pmod{\mathsf{m}}$

Then it is clear that $\langle H, * \rangle$ is a group with e = (0,0) as its identity element. Also if $\alpha = (0,1), \beta = (1,0)$

 $\beta^{x} \alpha^{y} = (x, y)$ which implies that each element of H can be determined uniquely in the form $\beta^{x} \alpha^{y}$ which means that H is the general product of $\{\alpha\}, \{\beta\}$. since $\{\alpha\}$ is of order m and $\{\beta\}$ is of order 5 so |H| = 7m, it is evident to see that $\alpha^{m} = \beta^{m} = e, \alpha\beta = \beta\alpha^{r}$ which are corresponding to the defining relation of G and so the permutation $\pi = (1)(2)(3)(4)(5)(6)(7)$ is induced by α .

Also *H* can be considered as a homomorphic image of *G*, since $|G| \le 7m$ and hence the two groups are isomorphic hence the theorem is proved.

Remark: It must be noted that two groups G, L with defining relation:

$$G = \{a,b;a^m = b^7 = e,ab = ba^r,r^7 \equiv 1 (\operatorname{mod} m)\}$$

$$L = \{a, b; a^m = b^7 = e, ab = ba^s, s^7 \equiv 1 \pmod{m} \}$$

Such that $r \not\equiv s \mod m$, then $G \cong L$ if and only if $r \equiv s^6 \pmod{m}$

Conclusion:

The general product of two finite cyclic groups one being of order 7, which is corresponding to

 $\pi = (1)(2)(3)(4)(5)(6)(7)$ is obtained by theorem 1.1 with defining relation (7.1), (7.2).

ACKNOWLEDGMENT

I want to express my thankfulness to professor dr N. G Elsharkawy for her encouragement

REFERENCES

- [1]K.R.Yacoub, on general products of two finite cyclic groups one being of order 4 prove math & phys. Soc. ARE, No 21, 1957 PP 119-126.
- [2]N.G. El-Sharkawy, S.F. El-Hadidi Parametric Representation of finite groups with-two independent Generators with, one Being of given order, International Jornal of mathematics and computation (IJMC). Vol.6; No. M10, March 2010, PP 27-42.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0 https://creativecommons.org/licenses/by/4.0/deed.en_US