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Abstract—In this paper, we introduce some fundamental
results of the elliptic curve over the quadratic field. After
we create an elliptic curve over the quadratic field with an
element of infinite order.[2,3,4].
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. INTRODUCTION

E introduce some importants results over the ring of
integers of the quadratic fields.

Definition 1. The quadratic field is any extension of degree
two over the rational field Q.

Theorem 2. All quadratic field is of the form Q(\/a),
where d is an integer without square factor.

Proposition 3. Let K =Q(/d), is a quadratic field

where d is an integer without square factor.
1. IKd =2 mod 4 or d=3 mod 4 then the integer ring

of isthesetof a+b/d where abezZK
2.1f d=1 mod 4 then the integer ring of is the set of
%(a+b\/a) where a,beZ and a=b mod 2.

Definition 4. An elliptic curve over the quadratic field
K= @(JE), is curve that is given by Weierstrass equation:
Y?Z = X%+ AXZ?+BZ?, where A B e K.[1,5].
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Il. ELLIPTIC CURVES OVER THE QUADRATIC FIELD WHIT AN

ELEMENT OF INFINITE ORDER

Pleaseln this section we introduce some lemmas for created an
eIIiptIi:e Curves over quadratic field whit an element o|f<infinite
order.AB

Let

by Weierstrass equation:
Y?Z = X®+ AXZ? + BZ?, where ABeK.

an elliptic curve over the quadratic field given

Lemma 1. Let ABeZ[i], K=Q[i] and P=(X,y)
an element of finite order in E, 5.

If (X,Y) e (Z[i])? then y=0 or y*|4A° +27B%.

ProofA8
Let an elliptic curve over the quadratic field K =QJi]

given by WXizerft?ézs"'quLéﬂ'oﬁ:’
with A B e Z][i].
Let P=(X,y) € E,p- Suppose that P has finite order.
If X,y €Z][i], thenby Lutz Nagelle Theorem [2], we have:
if y ¢E0 then y* |4A° +27B°..

A,B
Lemma 2. Let an elliptic curve over the quadratic
field K = @[F} §i3vén/b>§/ﬂ7\/5’ierstrass equation:
' with A B e|Z[i,]lz| Al
Jl'ﬁenﬁli@é exists A',B e Z[i] suc'ﬁ,;hgt

which the elliptic curve

and
have a point of

infinite order.

Proo”f"*B
Let an elliptic curve over the quadratic field K =QJi]

given by VVéiezrs%?Zst éo(ﬁﬁé'fiﬁ‘f:
with A B e ZJi].
We pose:
A =-(3| Al+1)%,
B =(3|B|+3)%,
% =3|Al+L
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and y, =3|B|+3.

We have:

X+AX+B = (3| A+ (3| A|+1)*x (3| A|+1)+ (3| B|+3)*
= (3| A|+1)*~ (3| A|+1)° + (3| B|+3)*
= (3/B[+3)’
= A

It’s clair that Q = (X, ¥;) € E,. ..
Suppose that Q has finite order, so by lemma2.1 we have:
y2|4A®+27B? = 3|4A°+27B"

= 3[4A°
= 3|A
Which is absurd because: A" =—(3| A| +1)°

Lemma 3. Let K :@(JE) and E,; an elliptic curve
over K given by Weierstrass equation:

y’ =X+ Ax+B, with A BeZ[\d]
Then, there exists A ,B’ EZ[\/E] such that | A" 2| A|
and | B ’ 1> B| which the elliptic curve EA',B' over K
have a point of an infinite order.

Proof Let K = Q(\/a) and E, ; an elliptic curve over K
given by Weierstrass equation:
y? =x3+ Ax+B, with A BeZ[d].
We suppose:
T =sup{| A[+L| B|+1},

A =2T,
B =3T?,
-
37
1+3'T
and yl:T.
We have:
3 ' o 212
+AX+B = +Z+43T
— 142x3HT7 +3°72
36
_ +43°T)2
= (22T
= y]_z'
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Such that , Q=(X,Y,) € EA,’B,, so by lemma2.1 we

have: Q has an infinite order.
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