
 

 

 

I. INTRODUCTION 

E introduce some importants results over the ring of 

integers of the quadratic fields.  

 

Definition 1. The quadratic field is any extension of degree 

two over the rational field    

 

Theorem 2. All quadratic field is of the form ( )d   

where d  is an integer without square factor.  
 

Proposition 3. Let ( )K d   is a quadratic field 

where d  is an integer without square factor. 

1. If 2d   mod 4  or 3d   mod 4  then the integer ring 

of 

K

 is the set of a b d  where a b    

2. If 1d   mod 4  then the integer ring of 

K

 is the set of 
1
2
( )a b d where a b   and a b  mod 2  

  

Definition 4. An elliptic curve over the quadratic field 

( )K d   is curve that is given by Weierstrass equation: 

2 3 2 3Y Z X AXZ BZ     where A B K   [1,5]. 

II. ELLIPTIC CURVES OVER THE QUADRATIC FIELD WHIT AN 

ELEMENT OF INFINITE ORDER  

PleaseIn this section we introduce some lemmas for created an 

elliptic Curves over quadratic field whit an element of infinite 

order.   

Let 

A BE 

 an elliptic curve over the quadratic field 

K

 given 

by Weierstrass equation:  
2 3 2 3Y Z X AXZ BZ     where A B K    

 

Lemma 1. Let [ ]A B i    [ ]K i  and ( )P x y   

an element of finite order in 
A BE    

If 2( ) ( [ ])x y i   then 0y   or 
2 3 24 27y A B    

 

Proof   

Let 

A BE 

 an elliptic curve over the quadratic field [ ]K i  

given by Weierstrass equation: 

 

2 3y x Ax B   

with [ ]A B i    

Let ( ) A BP x y E    . Suppose that P  has finite order.   

If [ ]x y i    then by  Lutz  Nagelle  Theorem [2], we have:   

if 0y   then 
2 3 24 27y A B   . 

 

Lemma 2. Let 

A BE 

 an elliptic curve over the quadratic 

field [ ]K i  given by Weierstrass equation: 
2 3y x Ax B   

 with [ ]A B i    

Then, there exists 
  [ ]A B i
 
   such that 

 A A


  

 and 
 B B


  

 which the elliptic curve 

  A B
E  



 have a point of 

infinite order.  

 

Proof   

Let 

A BE 

 an elliptic curve over the quadratic field [ ]K i  

given by Weierstrass equation:  
2 3y x Ax B   

 with [ ]A B i    

We pose:  
 2(3 1)A A

       

  2(3 3)B B

      

 
1 3 1x A      
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and                         1 3 3y B     

We have:  
3   3 2 2

1 1

3 3 2

2

2

1

(3 1) (3 1) (3 1) (3 3)

(3 1) (3 1) (3 3)

(3 3)

x A x B A A A B

A A B

B

y

 
                 

           

   



  

It’s clair that   1 1( )
A B

Q x y E  


      

Suppose that Q  has finite order, so by  lemma2.1 we have:  

2  3  2  3  2

1

 3

 

4 27 3 4 27

3 4

3

y A B A B

A

A

   





    

 

 

  

Which is absurd because:    
 2(3 1)A A

        

 

Lemma 3. Let ( )K d  and 
A BE 

 an elliptic curve 

over K  given by Weierstrass equation:  

2 3y x Ax B     with [ ]A B d    

Then, there exists   [ ]A B d
 
   such that  A A


    

and 
 B B


    which the elliptic curve 
  A B

E  


 over K  

have a point of an infinite order. 
  

Proof Let ( )K d  and 
A BE 

 an elliptic curve over K  

given by Weierstrass equation: 

 
2 3y x Ax B     with [ ]A B d     

We suppose:  

1 1T sup{ A B }         

 
 2A T

   

 
 2 23B T

   

 

1

1

3
x    

  

and                             

4

1 3

1 3

3

T
y


   

We have:  

6 2

4 8 2

6

4

3

3   2 21 2
1 1 3 3

1 2 3 3

3

21 3

3

2

1

3

( )

T

T T

T

x A x B T

y

 

   



    





 

  

Such that ,   1 1( )
A B

Q x y E  


     so by lemma2.1 we 

have: Q  has an  infinite order. 
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