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I. INTRODUCTION

ROBABILISTIC normed space is significant as a
generalization of deterministic results of linear normed
spaces. In a PN space, the norms of the vectors are
represented by probability distribution functions instead of
nonnegative real numbers. If X is an element of a PN space,
then its norm is denoted by F,, and the value F,(t) is

interpreted as the probability that the norm of x is smaller
than t. In [24], probabilistic normed spaces were first
introduced by Serstnev and then by it was extended to
random/probabilistic 2 -normed spaces by Golet [5] using the
notion of 2 -norm which is defined by Géhler [3,4] and since
then, many researchers have studied these subjects and
obtained various results [6-8,23,27,28]. Afterwards, Alsina et
al. [1] presented a new definition of a PN space which includes
the definition of Serstnev [25] as a special case. This new
definition rapidly became the standard one and it has been
adopted by many authors (for instance, [9-16,19,20]).

The concepts of statistical convergence for sequences of
real numbers was introduced (independently) by Steinhaus
[26] and Fast [2]. The concept of statistical convergence was
further discussed and developed by many authors in more
general abstract spaces [6,9-11,13,20].

Some new type of summability methods for double
sequences involving the ideas of de la Vallée-Poussin mean
has not been studied previously in the setting of probabilistic

2 -normed (PTN) spaces. Motivated by this fact, in this paper,
the notion of (1, «)-summable, statistically (1, )-summable,
statistically (2, u)-Cauchy and statistically (1, )-complete

for double sequence with respect to PTN-space and establish
some interesting results.
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Il. DEFINITIONS AND NOTATIONS

First we recall some of the basic concepts, which will be
used in this paper.

The notion of convergence for double sequence was
introduced by Pringsheim [18]: We say that a double sequence

x=(xjyk)j’k€N of reals is convergent to L in Pringsheim's

sense (shortly, (P) convergent) provided that ¢>0 there
exists a positive integer N such that |xj’k - L| <& whenever
j,k=N.

Statistical convergence for double sequences X =(x) of
real numbers was introduced and studied by Mursaleen and
Edely [17] as follows: Let KcNxN and
K(h1)={j<hk<l : (j,k)e A}, where h,leN. Then we
define upper and lower asymptotic density of a two-
dimensional set K, respectively

52(K) = (P)Iimsup'K(hr:’Il ; 5,(K) :=(P)Iiminf|K(hﬂ.

h, 15w

If 52(K)=5,(K) then the common value &,(K) is called
the double asymptotic density of the set K and

|K(h,|)|'

hi

The double sequence x = (xj’k) statistically converges to a
point L if for each £>0 we have &,(K(s))=0, where
K(e)= {(j,k), j<hk<l: |xjyk - L| > g} and in such situation

we will write L =st-limx (or x;  — L(st))

Let 2=(4,) and u=(u,) are two non-decreasing
sequences of positive numbers tending to oo such that

ﬂmﬂﬁﬂm +1, ﬂl=oand ﬂn+lsﬂn +l, ,Lll=0.
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Recall that (2, «)-density of the set K < NxN is given by

8, 4 (K)=(P)lim

MmN AmHn

n—py+1<k<n : (j,k)eKj

fm-2, +1<j<m,

provided that the limit exists. If A, =m for all m, and
i, =n for all n, the (4, x)-density is reduced to the double
natural density.

The generalized double de la Valée-Pousin mean is defined
by

1
t X)= Xt
S (j,kg‘mxun '

where J, =[m-4,+1Lm] and I, =[n—u,+1n]
We say that x = (x jk) is (4, u)-statistically convergent to
the number L if for every £>0,

TS
(P)Hmm{JeJm,keln : |Xjk—L|28]=0.

and in such situation we will write st; , -limx=L.

Definition 1. ([3,4]) Let X be a real vector space of
dimension d, where 2<d <. A 2-normon X is a function

|l : X xX — R which satisfies (i) |x,y||=0 if and only if
x and y are linearly dependent; (ii) [x,y| =y, (i)
e vl = el x. vl e eRi @) [xy+2] <[x y+[x2]. The
pair (X,[{) is then called a 2 -normed space.

As an example of a 2 -normed space we may take X = R?
being equipped with the 2-norm ||x,y| = the area of the

parallelogram spanned by the vectors x and y , which may be
given explicitly by the formula

||X: y|| = |X1YZ - x2y1|, X= (Xll X2 ) y= (yl7 Y2 )

Observe that in any 2-normed space (X||||) we have

[x.y|=0 and |x,y+ax|=|x,y| forall x,yeX and a<R.
then
oy al =l or fy-al-sl sl Given s

Also, if x,y and z are linearly dependent,
2 -normed space (X ||||) one can derive a topology for it via

the following definition of the limit of a sequence: a sequence
(x,) in X is said to be convergent to x in X if

limy,_,..[|x, =, y|| =0 for every ye X.

All the concepts listed below are studied in depth in the
fundamental book by Schweizer and Sklar [22].

Definition 2. Let R denotes the set of real numbers,
R, ={xeR : x>0} and S =[0,1] the closed unit interval. A
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mapping f : R— S s called a distribution function if it is
nondecreasing and left continuous with inf,_ f(t)=0 and

SupteR f (t) =1

We denote the set of all distribution functions by D" such
that f(0)=0.If acR,, then H, e D*, where

Ha(t)z{l' ift>a,

0, ift<a
It is obvious that H, > f forall f eD™.

Definition 3. A triangular norm (t-norm) is a continuous
mapping *: SxS — S such that (S,) is an abelian monoid

with unit one and c*d <ax*b if c<a and d<b for all
a,b,c,d €S. A triangle function 7z is a binary operation on

D* which is commutive, associative and z(f,H,)=f for
every f e D",

Definition 4. Let X be a linear space of dimension greater
than one, r is a triangle, and F : X xX — D*. Then F is

called a probabilistic 2-norm and (X,F,z) a probabilistic
2 -normed space if the following conditions are satisfied:

(22.1) F(xy;t)=Hyt) if x and y are linearly
dependent, where F(x,y;t) denotes the value of F(x,y) at
teR,

(2.2.2)
independent,

(2.2.3) F(x,y;t)=F(y,x;t) forall x,ye X ,

F(x,y;t)=Hy(t) if x and y are linearly

(2.2.4) F(ax,y;t) =F(x, y;‘;—‘) for every t>0,a =0 and
X,yeX,

(2.2.5) whenever

X, y,ze X .

F(x+y,z;t) > 7 (F(x, z;t), F(y, z;t))

I1l. MAINRESULTS

In this section, our aim is to define some concepts of (4, u)-
summable, statistically (2, «)-summable, statistically (4, x)-
Cauchy and statistically (Z,4)-complete for double with
respect to PTN-space and obtain some interesting results.

Definition 5. Let (X,F,z) be a PTN space. The double
sequence x=(x; ) in X is said to be (4,«)-summable (or
briefly, F(4,z)-summable) to L if for each & >0, qe(0,1)

and each nonzero ze X there exists N eN such that
Flty n(x)-L,z;&)>1-q for all m,n>N. In this case, we

write F(4, 1)-limx,z = L.
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Definition 6. Let (X,F,z) be a PTN space. The double
sequence x=(x; ) in X is said to be statistically (4,x)-

summable (or briefly, F(stlyﬂ)-summable) to L if

52(KM):O, where
Ko = {mun)eNxN : Flty o(0)-Lz:2)<1-0}

i.e. if for each ¢ >0, qe(0,1) and each nonzero z e X
1
(P)Im]m{msh,nsl : Fltnn(x)-Lozie)<1-2]=0

or, equivalently
(P)Irllnlwﬁ m<hn<i : Flt, . (x)-L, z;g)>1—/1a =1.

In this case, we write F(st,lyy)- limx,z=L, and L is called
F(stﬂ’#)-limit of Xx.

Definition 7. Let (X,F,z) be a PTN space. The double
sequence x=(x; ) in X is said to be statistically (4,x)-
Cauchy (or briefly, F(stllﬂ)—Cauchy) if for each &>0,

ge(0,1) and each nonzero ze X there exists M,NeN
such that for all m,p>M, n,g=N, the set

S, (4, 1)={mn)eNxN : Flt, ,(x)-t, 4(x). z;¢)<1-qf has
double natural density zero, i.e.

(P)ILT%HmSh’nSI : F(tm'n(x)—tp,q(x)v2;5)51_(]}‘=0'

Theorem 1. Let (X,F,z) be a PTN space. If a double
sequence x=(x; ) in X is statistically (4, ) -summable, that

is, F(stl’ﬂ)-limx,z:L exists, then F(st,l,#)-limx,z is
unique.
Proof. Suppose that F(St,lyﬂ)-limx,z:Ll and F(Sti,,u)-

limx,z=L,, where L #L,. For given £>0 and each
nonzero ze X, select q>0 such that z((1-q),1-q))>1-e.
Then, for any t >0, we define

Aq(2, )= {(mn)e NxN : Flt, ,(x)- L, z;t)<1-qf

and

By(4,1)={m,n)e NxN : Flt, ,(x)-L,,z;t)<1-q}

Since, Flst, ,)-limx,z=L; implies &,(A;(2,4))=0 and
similarly, ~we have  &,(B,(2,1))=0.

Cq( 4, 1)= Ay (4, 1) "By (4, 1) It follows
&,(Cq(4,11))=0 and hence the complement C&(2,4) is

8,(CE(2,p))=1.

Now, let
that

nonempty  set  and Now, if

(m,n)e NxN\C,(4, ), then
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Flli=L.zit) T(F(tm,n(x)— Ly, z;%} F[tm,n(x)— L, z;lj]

2
>7((1-9).0-q))>1-e.

Since &> 0 is arbitrary, we get F(L, —L,,zt)=1 forall t>0
and each nonzero zeX. Hence L =L,, which proves
theorem.

Theorem 2. Let (X,F,z) be a PTN space. If a double
sequence x=(x; ) in X is F(4, u)-summable to L, then it is

F(stﬂ’#)—summable to the same limit.

Proof. Let us consider that F(1, z)-limx,z=L. For every
£>0,t>0 and nonzero ze X, there exists positive integer
N such that

Fltnn(x)-L,zit)>1-¢
holds for all m,n> N. Since
M, (2, 4)=1{(m,n)eNxN : Flt, ,(x)-L,z;t)<1-¢f

is contained in NxN . Therefore &,(M,(4,u))=0, that is,
x=(xjk) is F(st/l’ﬂ)-summable to L.

The following example shows that the converse of Theorem
2 need not be true.

Example 1. Consider X =R?* with [x,y| =[xy, - XY

where x=(x,%), y=(y;,y,)eR? and let z(a,b)=ab for
all a,beS. Forall (x,y)e R® and t >0, consider

Foy(t)=—

:w.
Then (RZ,F,r) is a PTN space. The double sequence
X= (xjk) is defined by
. o2
S I
For £>0,t >0 and nonzero z e X, write
M, (2, 12)={(mn)eNxN : Flt, ,(x)z;t)<1-¢}

It is easy to see that

ot =L formn=w? weN
F(tm,n(x)v Z!t)— t+||tm,n(x)’ y|| - {fmnz otherwise;

and hence

. 0, ifmn=w? weN
“mF(tm’n(X)J;t):{l Iotherwise ) .
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We see that the sequence x = (x;) is not F(2, x)-summable

in (RZ,F,T) But the set M, (4, z) has double natural density
zero since M, (2, u2)c {(11),(4,4),(9,9)..}. From here, we
obtain that the converse of Theorem 2 need not be true.

Theorem 3. Let (X,F,z) be a PTN space. If a double
sequence x=(xjk) in X is statistically F(stl’#)-summable to
L if and only if there exists a subset

M ={(jm’kn) D<o <oi kg <k, <...}gN><N
such that &,(K)=1 and F(4, u)-limx; , ,z=L.

Proof. Suppose that there exists a subset
M ={(jn.Kn) i< p <o kg <kp<..fc NxN
such that &,(M)=1 and F(Z,)-limx; , ,z=L. Then there
exists N eN such that Flt, ,(x)-L,z;t)>1-s holds for all

m,n> N. Put

M, (2, 1)={mn)eNxN : Flt, \ (x)-Lzt)<i-&}

and M = {(ins1 Knsa) (inszs Kz ) Then 52(M ’):1 and
M, (4, 1)< N=K  which implies that 5,(M, (4, x))=0.
Hence x = (x;, ) is statistically (2, ) -summable to L in PTN
space.

Conversely, suppose that x:(xjk) is F(stlyﬂ)—summable to
L. For g=1,2,... and t >0, write

Mg (4, 22) = {(m,n)e NxN : Flt; \ ()-Lzit)< 1—&},

and
1
Kq(i,y)z{(m,n)e NxN : F(tjm’kn(x)— L,z;t)> E}
Then 5,(M (4, 1))=0 and
Ky(2, )2 Ko (2 1) K (2 1) 2 Ky (2, 1) > . (1)
and
5o(Kq(2p))=1 q=1.2.... 0

Now, we have to show that (m,n)e Kq(Z,4), x=(x; , ) is
F(Z,u)-summable to L. Assume that x=(x; , ) is not

F(4, u)-summable to L. Hence, there exists ¢ >0 such that
Flt; \ (x)-L.zit)<e for infinitely many terms. Let

K. (2, u)={mn)eNxN : Flt; , (x)-Lzt)>ef

and g>% with q=1,2,3,.... Then

E-ISSN: 2313-0571
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5 (K,(2,1))=0,
and by (1), Kq(4u)cK,(4,u) Hence &,(Kq(2 u))=0,
which contradicts (2) and therefore x=(x; , ) is F(4,u)-
summable to L.

Theorem 4. Let (X,F,z) be a PTN space. If a double
sequence x=(x; ) in X is (,4)-summable, then it is
statistically (4, «)-Cauchy.

Proof. Assume that F(st,w)- limx,z=L. Let >0 bea
given number so that choose g >0 such that

7((l-q)@-q))>1-c.
Then, for t >0 and nonzero z e X , we have
52(Aq(ﬁ’ﬂ))= 0,

where Ay(2,4)={(m,n)e NxN : Flty ,(x)-L,z:3)<1-q]
which implies that

52(A§(/1,#))=52[{(m,n)eNxN : F(tm]n(x)— L,Z;%j>1—q}}=l.

Let (f,9)e AS(4, 1) Then Flt; 4(x)-L,z;%)>1-g. Now, let

We need to show that

(m.n)e B, (4, 1)\ A (4, ). Then
F(tm]n(x)—tf’g(x),z;t)sl—g and F(tm’n(x)— L,z;%)>1—q, in
particular F(tf'g(x)— L,z;%)>l—q. Then

B, (2, u)c A2, ) Let

1- 2 Flty o (x)-t; 4(x). 2:t)

At 108

>7(1-0)@-a)>1-¢,
which is imposible. Therefore B, (4, u)< A, (4, 1) Hence, by
(3) 5,(B, (4, u))=0. Therefore, x is statistically (4, z)-
Cauchy in PTN-space.

Definition 8. Let (X,F,z) be a PTN space. Then,

(a) PTN-space is said to be complete if every Cauchy
double sequence is P -convergentin (X,F,7).

(b) PTN-space is said to be statistically (1,)-complete
(or briefly, F(st, ,)-complete) if every statistically (4, )-
Cauchy sequence in PTN space is statistically (4,u)-
summable.
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Theorem 5. Every probabilistic 2 -normed space (X,F,7)
is F(stﬂlﬂ)—complete but not complete in general.

Proof. Assume that x:(xjk) is F(stlyﬂ)—Cauchy but not
F(stﬂvﬂ)—summable. Then there exists M,N e N such that for
all mp>M, n,g>M, the set

D, (2, )= {m,n)e NxN : Flty ,(x)-t, 4(x) zit)<1-£}=0

has double natural density zero, i.e. §,(E, (4, x))=0 and
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double sequences in probabilistic normed spaces”, Ann. Univ. Ferrara,
vol. 58, pp. 331-339, 2012.
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52(Eg(l,,u)): 52“(m,n)e NxN : F(tm,n(x)_ L, Z;E] >1_8}J :[é_l] S.A. Mohiuddine, and M. Aiyub, “Lacunary statistical convergence in

It follows that &, (Eg (4, ,u)):l. Since
F(tm]n(x)—tp]q(x), zt)> ZF(tm‘n(x)— L, z;%) >1-¢,

=2, Hence 52(E§(/1,,u))=0, which

give rise to a contradiction, since x=(xjk) is F(stﬁ’”)-

it Flty o (x)-Lz14)> 52,

Cauchy. Consequently, x=(xjk) must be F(stﬂ’#)-summable.

To see that a probabilistic 2 -normed space is not complete
in general, for this, we have the following example:
Example 2. X =(0,1]x(0,1] and F(x,z;t)= —t— for t>0

t
t+x, z]
and nonzero ze X. Then (X,F,z) is a probabilistic 2-
normed space but not complete, since the double sequence
(#) is Cauchy with respect to (X,F,z) but not P-
convergent with respect to the present PTN-space.

IV. CONCLUSION

This study indeed presents a relationship between two various disciplines:
the theory of probabilistic normed spaces and summability theory. Some new
type of summability methods for double sequences involving the ideas of de
la Vallée-Poussin mean has not been studied previously in the setting of
probabilistic 2 -normed (PTN) spaces. Motivated by this fact, in this paper,

the notion of (4, u)-summable, statistically (4, )-summable, statistically

(4,1)-Cauchy and statistically (2, 4)-complete for double sequence with
respect to PTN-space and establish some interesting results. These results can
be utilized to study the convergence problems of double sequences having
chaotic pattern in probabilistic 2 -normed spaces.
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