
I. INTRODUCTION 
Copper-based alloys are used in the mass production of 

electrical components and water pipe fittings. They are usually 
machined using high speed CNC machines, which are mostly 
very high speed lathes fed with brass wire of a relatively small 
diameter, so that the maximum speed is limited to 140-
220m/min, although the tooling is capable of a good 
performance at much higher speeds. When copper alloys are 
machined, very high forces act on the tool, particularly at low 
cutting speeds. This is due to the large contact area on the rake 
face resulting in a small shear plane angle and thick chips [1], 
contributing in the fact that copper is cosidered as one of the 
most difficult materials to machine. When feed rate is 
decreased or the cutting speed is increased the cutting forces 
are decreased and the surface finish is improved.  

 

Surface properties dominate the quality of the finished 
component, since they influence features like dimensional 
accuracy; tribological issues such as the friction coefficient  
and wear; post processing requirements; appearance and cost.  
Surface roughness or texture constitutes a measure for 
achieving finer surface irregularities in the finished product, 
while three components −i.e., roughness, waviness, and form− 
are required for its determination [2].  

A number of studies −investigating the relation of cutting 
forces, tool wear, chip morphology, accuracy issues, and 
dynamic behaviour during turning with the produced surface 
quality− are reported in literature.  A study of the effects of 
different process parameters: tool radius (r), feed rate (f), 
cutting speed (V), and depth of cut (a) in turning of a copper 
alloy (GC-CuSn12), on the surface texture parameters Ra, Rz, 
and Ry is attempted in the current work, using the Taguchi 
methodology and Neural Networks modelling. 

Thus, an L9(34) orthogonal matrix experiment was 
conducted [3]. A matrix experiment consists of a set of 
experiments where the settings of several process parameters 
to be studied are changed from one experiment to another in a 
combinatory way. Experimental results are used in order to 
train a feed forward back propagation neural network (FFBP-
NN) in order to predict surface texture parameters in turning of 
near-to-net shape parts of copper alloy. Using FFBP-NN in 
combination with orthogonal matrix experiment, an easy way 
modeling could be achieved, and applied on experimental 
region in order to predict surface texture parameters. 

 

II. EXPERIMENTAL SETUP 
The material used for cutting is specified as GC-CuSn12. It is 
a copper alloy containing 84 to 85% Cu, 11 to 14% Zn, under 
1% Pb, less than 2% Ni, and finally under 0.2% Sb. The 
machine used for the experiments was a Cortini F100 CNC 
machine lathe (3.7kW) equipped with a GE Fanuc Series O-T 
control unit. The test specimens were in the form of bars, 
32mm in diameter and 80mm in length for near-to-net-shape 
machining. Tailstock was not used (Fig. 1).  The cutting tools 
were titanium nitride screw-on positive inserts, CCMT 09T30, 
with a 0.4 and 0.8mm tool nose radii, accordingly (Fig. 2). 

Surface roughness is a widely used index characterising a 
product’s quality, and is measured off-line −when the 
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component is already machined.  The surface texture 
parameters measured during this study are: the average surface 
roughness (also known as centre line average – CLA), Rα; 
average maximum peak to valley height of the profile, Rz; and 
maximum peak to valley height; Ry; all measured in μm. 
Measurements are being conducted using the Mitutoyo, 
surftest RJ-210 tester. 
 

 
Fig. 1: Cortini F100 CNC machine lathe 

 

 
Fig. 2: Machined specimens and inserts 

 
The CLA Ra (Fig. 3) can be obtained by taking the 

arithmetic mean of the absolute values of 1150 different 
positional deviations over a 4 mm standard length with a cut-
off at 0.8 mm according to the relation, 
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The average maximum peak to valley height of the profile (Rz) 
is defined according to the relation, 
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where Ypi are the five tallest peaks, and Yvi, the five lowest 
valleys within the sample considered (Fig. 3).  Finally, the 
maximum peak to valley distance of the filtered profile (Ry) 
over an evaluation length sensitive to large deviations from the 
mean line and scratches is defined according to the relation, 
 

vpy RRR +=  (3) 
where Rp  and Rv are the absolute values of the maximum 
peak and maximum valley within the measured standard length 
(Fig. 3). Α four parameter design was performed as shown in 
Table 1. Note that Level 1 and level 3 for the parameter (r) 
assign the same value. This is not an obstacle for the 
methodology followed.   

 The Taguchi design method is a simple and robust 
technique for process parameters optimisation.  The method 
involves the damping (reduction) of variation in a 
manufacturing process through robust design of experiments. 
Taguchi's emphasis on minimising deviation from target, led 
him to develop measures of the process output that incorporate 
both the location of the output as well as its variation.   
 

 
Fig. 3: Surface texture parameters 

 

Table 1: Parameter design. 

  Levels 
Νο Process Parameters 1 2 3 
1 Tool Radius (r, mm) 0.4 0.8 0.4 

2 Feed Rate -(f, mm/rev) 0.05 0.1
5 0.25 

3 Cutting Speed (V, m/min)  100 150 200 
4 Depth of cut (a, mm) 0.2 0.6 1 

 
These measures are called signal-to-noise ratios.  The 

signal-to-noise ratio provides a measure of the impact of noise 
factors on performance.   

Table 2: Orthogonal array L9(34). 

 Column 
No 
Exp 1 2 3 4 

1 1 1 1 1 
2 1 2 2 2 
3 1 3 3 3 
4 2 1 2 3 
5 2 2 3 1 
6 2 3 1 2 
7 3 1 3 2 
8 3 2 1 3 
9 3 3 2 1 
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Calculation of the S/N ratio depends on the experimental 
objective according to which the experiment is conducted 
−i.e., bigger-the-better, smaller-the-better, and nominal-is-best 
with corresponding calculation formulae [5].   The standard 
(L9(34)) orthogonal matrix experiment was used (Table 2). 
Columns 1, 2, 3, and 4 are assigned to tool radius (r), feed rate 
(f), cutting speed (V) and depth of cut (a), respectively. 

III. EXPERIMENTAL RESULTS 
The Taguchi design method is a simple and robust technique 
for optimizing the process parameters. In this method, main 
parameters, which are assumed to have an influence on process 
results, are located at different rows in a designed orthogonal 
array. With such an arrangement randomized experiments can 
be conducted. In general, signal to noise (S/N) ratio (n, dB) 
represents quality characteristics for the observed data in the 
Taguchi design of experiments. In the case of surface 
roughness amplitude [4][6][7], lower values are desirable. 
These S/N ratios in the Taguchi method are called as the 
smaller-the-better characteristics and are defined as follows: 
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where yi is the observed data at the ith trial and n is the number 
of trials. From the S/N ratio, the effective parameters having 
an influence on process results can be obtained and the optimal 
sets of process parameters can be determined. Based on 
Robust design, the standard orthogonal array (L9(34)) has been 
selected in order to perform the matrix experiment (Table 3). 
Three levels for each factor were selected (Table 1). Following 
the (L9(34)) orthogonal array nine experiments were performed 
with each experiment producing a test part which was tested 
for Ra, Rz, and Ry all measured in μm. 
 

Table 3: Matrix experiment 
Ex. 
No. r f V a Ra Rz Ry 

1 0.4 0.05 100 0.2 1.713 9.238 11.154 
2 0.4 0.15 150 0.6 1.384 9.020 11.001 
3 0.4 0.25 200 1 4.576 19.290 22.488 
4 0.8 0.05 150 1 1.278 7.972 9.947 
5 0.8 0.15 200 0.2 1.674 10.151 12.024 
6 0.8 0.25 100 0.6 2.352 13.688 16.055 
7 0.4 0.05 200 0.6 1.549 9.208 10.663 
8 0.4 0.15 100 1 1.995 13.862 16.604 
9 0.4 0.25 150 0.2 5.149 22.005 24.761 

Mean (m) 2.407 12.714 14.966 
 

IV. NEURAL NETWORK ARCHITECTURE 
 Aiming in the prediction of the produced surface roughness 
parameters (Ra, Rz, and Ry) during longitudinal turning of a 
Cooper alloy, a NN model has been developed. The four (4) 
factors studied were used as input parameters of the NN 
model.  Previous studies [8] indicate that by using Taguchi’s 

DoE methods, a structured method of NN parameter-setting 
can be implemented, which identify NN and training parameter 
settings resulting in enhanced NN performance. Training 
samples are presented to the NN during training, and the 
network is adjusted according to its error.  The nine (9) 
experimental data samples (Table 3), were separated into three 
groups, namely the training, the validation and the testing 
samples. Training samples are presented to the network during 
training and the network is adjusted according to its error. 
Validation samples are used to measure network generalization 
and to halt training when generalization stops improving. 
Testing samples have no effect on training and so provide an 
independent measure of network performance during and after 
training (confirmation runs). 
In general, a standard procedure for calculating the proper 
number of hidden layers and neurons does not exist. For 
complicated systems the theorem of Kolmogorov or the 
Widrow rule can be used for calculating the number of hidden 
neurons [9]. In this work, the feed-forward with back-
propagation learning (FFBP) architecture has been selected to 
analyze the surface texture parameters. These types of 
networks have an input layer of X inputs, one or more hidden 
layers with several neurons and an output layer of Y outputs. 
In the selected ANN, the transfer function of the hidden layer 
is hyperbolic tangent sigmoid, while for the output layer a 
linear transfer function was used. The input vector consists of 
the four process parameters of Table 3. The output layer 
consists of the performance measures, namely the Ra, Rz, and 
Ry surface texture parameters. According to ANN theory 
FFBP-NNs with one hidden layer are appropriate to model 
each mapping between process parameters and performance 
measures in engineering problems [10]. 
 In the present work, five trials using FFBP-NNs with one 
hidden layer were tested having 10, 11, 12, 13 and 14 neurons 
each; see Figure 5. This one that has 13 neurons on the hidden 
layer gave the best performance as indicated from the results 
tabulated in Table 4. 

The one-hidden-layer 13-neurons FFBB-NN was trained 
using the Levenberg-Marquardt algorithm (TRAINLM) and 
mean square error (MSE) used as objective function. The data 
used were randomly divided into three subsets, namely the 
training, the validation and the testing samples. 
 

 
Fig. 4: The selected ANN architecture (feed-forward with 

back-propagation learning). 
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Table 4. Best performance of ANN architecture. 

 
ANN Architecture 

4x10x3 4x11x3 4x12x3 4x13x3 4x14x3 
Training 1 1 1 1 1 

Validation 0.8963 0.8440 0.8719 0.9544 0.7224 
Test 0.1265 0.8557 0.8292 0.99.06 0.8492 
All 0.8547 0.9333 0.9541 0.998- 0.9246 

Best val. 
perf. 9.88 11.64 11.17 2.91 14.82 

epoch 1 2 4 1 1 
 

Back-propagation ANNs are prone to the overtraining 
problem that could limit their generalization capability [8]. 
Overtraining usually occurs in ANNs with a lot of degrees of 
freedom [10] and after a number of learning loops, in which 
the performance of the training data set increases, while the 
performance of the validation data set decreases.  Mean 
Squared Error (MSE) is the average squared difference 
between network output values and target values. Lower 
values are better. Zero means no error. The best validation 
performance is equal to 2.91 at epoch 1; see Figure 5. 

 

 
Fig. 5: The selected ANN architecture (feed-forward with 

back-propagation learning). 
 
Another performance measure for the network efficiency is 

the regression (R); see Figure 6. Regression values measure 
the correlation between output values and targets. The 
acquired results show a good correlation between output 
values and targets during training (R=1), validation 
(R=0.9544), and testing procedure (R=0.9906). 

The trained ANN model can be used for the optimization of 
the cutting parameters during longitudinal turning of a cooper 
alloy.  

This can be done by testing the behaviour of the response 
variable (Ra, Rz, and Ry) under different variations in the 
values of tool radius (r), feed rate (f), cutting speed (V), and 
depth of cut (a) (Fig. 7). 

 

V. CONCLUSIONS 
The surface texture parameters (Ra, Rz, and Ry) of copper alloy 
near-to-net-shape parts during turning was measured according 

to a matrix experiment. The results were used to train a feed 
forward back propagation neural network with a topology of 
4X13X3 neurons. The proposed NN can be used to predict the 
surface texture parameters as well as to optimize the process 
according to each one of the surface texture parameters. As a 
future work Authors plan to improve the performance of 
FFBP-NN incorporating more experiments as well as 
investigate the performance of alternatives training algorithms. 
In addition a comparison among other approaches such as 
regression and additive modeling will be performed. Using the 
extracted NN the surface response of Ra, Rz, and Ry can be 
drawn and the effects of process parameters be estimated 
inside the experimental region in which the designed 
experiment is conducted. This methodology could be easily 
applied to different materials and initial conditions for 
optimization of other material removal processes. 

 

 

 
Fig. 6: Regression plots 

 
 

Fig. 7: CLA Ra according feed rate and depth of cut 
(r=0.8mm, V=200m/min) 
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