
 

 

  
Abstract—Mechanisms are significant in mechanical 

engineering as they are required for proper motion 

transition. This work studies the kinematic analysis of the 

planar mechanisms using constraint properties between 

links and joints. A joint library has been built by two types 

of joints (revolute and prismatic) and has been modeled to 

be extended in the future. The Kinematic Analysis of 

General Planer Mechanisms (KAGPM) has been described 

and implemented through the Graphical User Interface in 

MATLAB. The Newton-Raphson method was utilized as a 

numerically computational technique to resolve the 

kinematic constraint equations. The proposed KAGPM 

program has been in the kinematic analysis of a slider crank 

mechanism for the purpose of validation with Haug. For 

more validation of the program, the effects of some effective 

parameters have been investigated (the geometric of the 

mechanism, the initial conditions, and the transient of the 

mechanism). 

 

Keywords—Computer-aided, Constraints Mechanisms, 

Kinematic analysis, MATLAB GUI, Planar mechanisms.  

I. INTRODUCTION 
echanisms are systems of rigid bodies connected by joints 
that result in a system with at least one degree of freedom. 

The transformation of an input motion into a complicated 
output motion is the main feature [1],[2]. 

Mechanisms are a topic covered in many mechanical 
engineering curricula around the world. The way we teach 
kinematics is evolving with time. By-hand graphical 
approaches to kinematic analysis of position, velocity, and 
acceleration were popular in the 1970s. In the past few years, 
more and more people have been programming algebraic 
solutions on computers [3]. 

The multibody analysis approach has a strong foundation in 
computer-based mechanism analysis nowadays. Pro Engineer, 
SolidWorks, Solid Edge, Adams, and AutoCAD are some of the 
most popular licensed software programs. There are many ways 
to use open-source software, and some of them require the user 
to learn how to program [4],[5],[6].   

 
 

Recent CAD systems are smarter and use more automated 
processes. Engineers have created approaches to help designers 
utilize automated CAD systems in concurrent engineering. 
Parametric analysis and intelligence are illustrations. 
Parametric modeling revolutionized computer-aided design. 
This accelerates design iteration in commercial CAD software. 
Most parameters relate to fundamental equations in parametric 
technology [7].   

 
Expertise and insight from engineers are critical to the design 

process. Performance may be improved by altering design 
parameters. There may be numerous iterations on a design 
based on experience and calculations. 

Computer-Aided Design Synthesis (CADSYN) is a CAD 
program that lets you see and interact with planar four-bar 
systems [8]. 

MATLAB's COM Server has a Visual Basic.NET GUI, so 
users may easily change design parameters. This lets 
researchers study the kinematics of gantry robots and find the 
best way to design and set them up [9]. 

In many areas of research, but particularly in engineering, the 
use of digital computer programs has grown in importance 
[10],[11],[12]. 

 On the other hand, little study focuses on their application to 
the kinematics and dynamics of mechanical systems [13],[14].  

 
The purpose of this study is to introduce the kinematic 

analysis of the planar mechanisms using constraint properties 
between links and joints. The Kinematic Analysis of General 
Planer Mechanisms (KAGPM) has been described and 
implemented through the Graphical User Interface in 
MATLAB. The kinematic performance of the slide-crank 
mechanism has been evaluated to validate the quality and 
efficacy of the KAGPM program. The results demonstrated a 
clear correlation with a published result with the same 
conditions and geometry by Haug [1]. For more validation of 
the program, the effects of some effective parameters have been 
investigated (geometric of the mechanism, the initial conditions 
and the response of the mechanism in the transient state). 
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II. KINEMATIC ANALYSIS OF PLANAR MECHANISMS 
In kinematics, a mechanism's location, velocity, and 

acceleration can be studied without regard to the forces that 
cause the motion to occur. The kinematics of the system must 
be quantitatively specified in terms of generalized coordinates 
before equations of motion can be formulated. Generalized 
coordinates are defined as any combination of variables that 
uniquely identify the location and orientation of everybody in a 
mechanism or the configuration of that mechanism. 

The global generalized coordinates are defined in this work 
by vector q. Two types of fames have been introduced to 
describe the motion of each body i in the mechanism. One of 
them is the moving frame of reference xi-yi, attached to the 
body, and the other one is the fixed frame x0-y0, as shown in 
Fig. 1. The origin of each moving frame i can be defined with 
respect to the fixed frame by a vector 𝑟𝑖 = [𝑥𝑖 𝑦𝑖]𝑇 while the 
rotation of the body is defined by the rotation angle 𝜑𝑖 of the 
moving frame with respect to the fixed frame. A 3 x 1 column 
vector 𝑞𝑖 = [𝑥𝑖 𝑦𝑖 𝜑𝑖]𝑇 can be defined to represent planar 
cartesian generalized coordinates for body i. For a mechanism 
of Nb bodies, the number of planar cartesian generalized 
coordinates N is N = 3 x Nb, while the global generalized 
coordinate N x 1 vector q for the mechanism can be represented 
by 𝑞 = [𝑞1

𝑇 𝑞2
𝑇 ⋯ 𝑞𝑁𝑏

𝑇]𝑇 [1]-[6]. 
 

 
Fig.1   Moving and fixed frames of reference. 

The relation between the moving and fixed frames can be 
defined by the position of point P with respect to them as: 

                             𝑟𝑃 = 𝑟𝑖 + 𝑟𝑃/𝑖                                        (1) 
Where rp and ri are the position of point P on the body i in vector 
form with respect to the fixed and moving frame, respectively. 
The position of point P can be represented in matrix form by 
𝑃0 = [𝑃𝑥0 𝑃𝑦0 1]𝑇 and 𝑃𝑖 = [𝑃𝑥𝑖 𝑃𝑦𝑖 1]𝑇 in the fixed 
and moving frame of body i, respectively. 
Equation (1) can be represented in matrix form to transfer the 
position of point P from the moving frame i to the fixed frame. 

                                 𝑃0 = 𝑇0𝑖  𝑃𝑖                                         (2) 
Where T0i is the transformation matrix from frame i to frame 0 

and is defined as; 𝑇0𝑖 = [
𝑅0𝑖 𝑆0𝑖

0 1
] in the homogenous form. 

R0i, S0i is the rotation and translation matrices from frame i to 
frame 0, respectively. 

𝑅0𝑖 = [
𝐶𝑖 −𝑆𝑖

𝑆𝑖 𝐶𝑖
]      𝑆0𝑖 = ⌈

𝑥𝑖

𝑦𝑖
⌉ 

Where Ci and Si are cos(φi) and sin(φi), respectively. 

Kinematics is the mathematical basis for the position, 
velocity, and acceleration analysis of planar mechanical 
systems. A set of kinematic constraint equations between any 
two bodies which regulate their relative motion can be 
represented by an algebraic equation 𝜑𝑘(𝑞, 𝑡) = 0. Kinematic 
constraints are functions of the system's generalized 
coordinates but are not explicitly dependent on time. These 
restrictions characterize a machine's physical structure and 
provide one or more degrees of freedom. Actuator inputs that 
display the evolution of some position coordinates over time are 
frequently employed to represent the movement of mechanical 
systems. The system of kinematics constraints equations cannot 
be solved without a driving constraint equation 𝜑𝐷(𝑞, 𝑡) = 0 
that uniquely determines the motion of the system when 
creating a library of kinematic equations for broad classes of 
mechanisms [1]-[4]. 

                     𝜙(𝑞, 𝑡) = ⌈
𝜑𝑘(𝑞, 𝑡)

𝜑𝐷(𝑞, 𝑡)
⌉ = 0                             (3) 

where 𝜑(𝑞, 𝑡) represents a set of Nc constraint equations. 
Assume that numerical techniques were employed to solve the 
algebraic refer to (3) for q at discrete times. Since q is not 
explicitly known as a function of time, it cannot be 
differentiated to yield  𝑞̇ or 𝑞̈. Using the chain rule to different 
refer to (1) to find the derivatives of both sides with respect to 
time [1]-[4]. The velocity equation is as shown. 
 

        𝜕𝜑

𝜕𝑞
𝑞̇ +

𝜕𝜑

𝜕𝑡
= 0                   𝜑𝑞𝑞̇ = −𝜑𝑡                        (4) 

For the nonsingular Nc x N Jacobian matrix 𝜑𝑞, refer to (4), 
which can be solved at discrete time periods to obtain 𝑞̇ . 
Similarly, using the chain rule to different refer to (4) to find 
the derivatives of both sides  with respect to time [1],[2]-[4]. The 
acceleration equation is as shown. 
 

𝜕𝜑𝑞

𝜕𝑞

𝜕𝑞

𝜕𝑡
𝑞̇ +

𝜕𝜑𝑞

𝜕𝑡
𝑞̇ +

𝜕𝜑

𝜕𝑞

𝜕𝑞̇

𝜕𝑡
+

𝜕𝜑𝑡

𝜕𝑞

𝜕𝑞

𝜕𝑡
+

𝜕𝜑𝑡

𝜕𝑡
= 0 

               𝜑𝑞𝑞̈ + (𝜑𝑞𝑞̇)
𝑞

𝑞̇ + 2𝜑𝑞𝑡𝑞̇ = −𝜑𝑡𝑡                       (5) 

III. JOINTS LIBRARY 
In this part, a library of joints has been created that consists 

of all the constraint equations necessary to describe the motion 
of those joints. With this library, the user can choose the type 
of joint in the system, making it easy to model and analyze any 
mechanism. The most common joints used with the planer 
mechanisms have been represented in this work: revolute and 
prismatic joints. The joint library created in this work has been 
programmed as some modules to be extended in future work. 

A. Revolute Joint 

The revolute joint allows relative rotation about a point P that 
is common to bodies i and j, as shown in Fig. 2. If one body is 
held fixed, the other body has only one rotational degree of 
freedom from the pair. The point P is defined with respect to 
frame i and frame j by Pi and Pj, respectively. As the point P is 
common, the constraint equations necessary to describe the 
motion of that joint. 

x0 

y0 xi 
yi P 

ri 

rP 
rP/i 

i 

o 

oi 
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𝑃0 = 𝑇0𝑖  𝑃𝑖 = 𝑇0𝑗  𝑃𝑗 

[
𝐶𝑖 −𝑆𝑖 𝑥𝑖

𝑆𝑖 𝐶𝑖 𝑦𝑖

0 0 1

] ⌈
𝑃𝑥𝑖

𝑃𝑦𝑖

1

⌉ = [

𝐶𝑗 −𝑆𝑗 𝑥𝑗

𝑆𝑗 𝐶𝑗 𝑦𝑗

0 0 1

] ⌈

𝑃𝑥𝑗

𝑃𝑦𝑗

1

⌉ 

 
       𝐶𝑖𝑃𝑥𝑖 − 𝑆𝑖𝑃𝑦𝑖 + 𝑥𝑖 − 𝐶𝑗𝑃𝑥𝑗 + 𝑆𝑗𝑃𝑦𝑗 − 𝑥𝑗 = 0             (6) 
       𝑆𝑖𝑃𝑥𝑖 + 𝐶𝑖𝑃𝑦𝑖 + 𝑦𝑖 − 𝑆𝑗𝑃𝑥𝑗 − 𝐶𝑗𝑃𝑦𝑗 − 𝑦𝑗 = 0             (7) 

 
Fig.2   Revolute Joint. 

B. Prismatic Joint  

A translational joint allows relative translation of a pair of 
bodies along a common axis but no relative rotation of the 
bodies. Such a joint may be defined as a straight block on one 
body that fits precisely into a straight slot (or keyway) on the 
second body. Let the points Pi, Pj, Qi and Qj be specified on a 
line that is parallel to or on the path of relative translation 
between bodies i and j for the translational joint depicted in 
Fig.3.  𝑃𝑖  and Qi are noncoincident locations on body i, while 
𝑃𝑗 and 𝑄𝑗  are noncoincident points on body j. 

 Vectors Vi and Uj must always be collinear. i.e., 𝑉𝑖 = 𝐴𝑖  𝑉𝑖
′   

where  𝑉𝑖
′ =[𝑥𝑖

𝑝
− 𝑥𝑖

𝑄 , 𝑦𝑖
𝑝

− 𝑦𝑖
𝑄  ]𝑇, and 𝑉𝑗 is similarly defined 

by data that locates 𝑃𝑗  and 𝑄𝑗  on body j [1] . 

𝑉𝑖 = 𝑄𝑖 − 𝑃𝑖      𝑉𝑖 = ⌈
𝑄𝑥𝑖 − 𝑃𝑥𝑖

𝑄𝑦𝑖 − 𝑃𝑦𝑖

0

⌉    OR     𝑉𝑖 = ⌈
𝑄𝑥𝑖 − 𝑃𝑥𝑖

𝑄𝑦𝑖 − 𝑃𝑦𝑖
⌉ 

𝑈𝑗 = 𝑄𝑗 − 𝑃𝑗      𝑈𝑗 = ⌈

𝑄𝑥𝑗 − 𝑃𝑥𝑗

𝑄𝑦𝑗 − 𝑃𝑦𝑗

0

⌉  OR   𝑈𝑗 = ⌈
𝑄𝑥𝑗 − 𝑃𝑥𝑗

𝑄𝑦𝑗 − 𝑃𝑦𝑗
⌉ 

The rotation of vector Vi by an angle 90o has been introduced 
to define the perpendicular vector Vi

⊥ to the vector Vi. 

𝑉𝑖
⊥ = 𝑅90𝑉𝑖                 𝑉𝑖

⊥ = ⌈
𝑄𝑥𝑖 − 𝑃𝑥𝑖

𝑄𝑦𝑖 − 𝑃𝑦𝑖
⌉ 

Where 𝑅90 = [
0 −1
1 0

] is the rotation matrix by 90o to obtain 
the perpendicular. 
As the scalar product between any two perpendicular vector 
equal zero, the constraints equations necessary to describe the 
motion of that joint can be  achieved with the following 
limitations. 
With respect to the moving frames of each body, 

(𝑉𝑖
⊥)

𝑇
𝑈𝑗 = 0 

Which can be represented with respect to the fixed frame as: 
                               (𝑅0𝑖𝑉𝑖

⊥)
𝑇

𝑅0𝑗𝑈𝑗 = 0                               (8) 
The position vector of the point P in the two frames is 
represented with respect to the moving frames by: 

𝐷𝑖𝑗 = 𝑃𝑗 − 𝑃𝑖  

With respect to the moving frames of each body, 
(𝑉𝑖

⊥)
𝑇

𝐷𝑖𝑗 = 0 
Which can be represented with respect to the fixed frame as: 

              (𝑉𝑖
⊥)

𝑇
𝐷𝑖𝑗 = (𝑅0𝑖𝑉𝑖

⊥)
𝑇

(𝑅0𝑗𝑃𝑗 − 𝑅0𝑖𝑃𝑖) = 0       (9) 
 

 
Fig. 3  Prismatic Joint. 

IV. COMPUTATIONAL TECHNIQUES IN KINEMATICS     
The kinematic equations that define the system's location are 

highly nonlinear, but the velocity and acceleration equations are 
linear and can be solved using matrix factorization and solution 
techniques that are well suited for computer implementation. 
Because of the large number of variables involved, it is 
impossible to write out the explicit governing equations for 
large-scale systems, much less solve them analytically. 
Numerical algorithms that quickly converge and are efficient 
can be used to solve the kinematic position equations on a lime 
grid at each moment after an assembled configuration has been 
achieved with independent kinematic and driving restrictions.  
Mathematical methods, such as the Newton-Raphson method 
and matrix factorization, will be discussed here to solve 
nonlinear algebraic constraint equations [1]-[5]. Fig. 4 shows 
the algorithm of the iterative Newton-Raphson method. 
 

 
Fig. 4   Newton-Raphson algorithm for constrained equations. 
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V. DESCRIPTION OF KAGPM PROGRAM 
     Fig. 5 displays the KAGPM algorithm, which describes how 
the KAGPM program operates using MATLAB Graphical User 
Interface (GUI). The Graphical User Interface makes it much 
easier to enter data, especially for people who have never used 
MATLAB before.  

 
Fig. 5    The KAGPM algorithm. 

    The general panel of the KAGPM program is shown in Fig. 
6, which was created with the goal of making the multi-body 
mechanism analysis process more user-friendly for people who 
have never used it before. KAGPM explains the initial model 
design mechanism by selecting a certain number of links and 
joints. Assuming that the previous design was correctly 
implemented, the second step requires user input for each link 
and describes the type of each joint before selecting the driver 
constraint joint type and input data for it. The results and 
simulations have been presented through the curves of the time 
history of the position, velocity, and acceleration of any point 
on the mechanism. 
 

 
Fig.6  The KAGPM GUI program's panel. 

VI. VALIDATION OF THE PROPOSED KAGPM PROGRAM 
         A slider crank mechanism has been used for the 

purpose of validation of the proposed program. This type of 
mechanism is often found in car engines and sewing machines. 

Fig.7 depicts the sliding-crank mechanism. To model the slider 
crank mechanism, the number of links and joints, the kind of 
joints, and the driver have to be declared. Table I shows the 
main geometric configurations of the slider crank mechanism 
used in the validation of the proposed GUI program [1]. 

 
Fig. 7 Slider Crack Mechanism. 

 

Table I. Slider Crank mechanism configurations 
Crank length 2 (m) 
Connecting rod length 3.5 (m) 
Number of links 3 
Number of joints 4 
Number of Revolute joints 3 joints (A, B and C) 
Number of Prismatic joints 1 joint (D) 

The global generalized coordinates are defined by: 
𝑞 = [𝑥1 𝑦1 𝜑1 𝑥2 𝑦2 𝜑2 𝑥3 𝑦3 𝜑3]𝑇 

The start panel shown in Fig. 8 has been designed to add the 
links, joints, and driver. Select the link to enter its 
configurations and its initial conditions as shown in Fig. 9. The 
initial conditions q0 of the mechanism have been chosen as: 

𝑞0 = [1 0 0 3.75 0 0 5.5 0 0]𝑇  
 

 
Fig. 8     Start panel of KAGPM. 

 

 
Fig. 9   Initial conditions and configurations of any link. 

    The slider crank mechanism includes four joints (three 
revolute joints and one prismatic joint). The details of which are 
summarized in Table II to show its configuration and the local 
position with respect to the moving frame of each link. The 
number of joints has been chosen as indicated in the KAGPM 
homepage, as shown in Fig. 8, and the information for each joint 

Start 

Links Data (Geometry and material properties) 
Joints Data (Type of joints) 

Driver Data (Driver constrain and DOF) 

Kinematic constrains According to the type of joint 
Driving constrains According to the DOF 

Calculation and Investigations 
Kinematic A (Position, Velocity, and Acceleration) 

Kinetic (Force analysis) 

Data Validation  

Results and Simulation 

End 

x
0 

y0 
x1 

y1 
x2 

y2 

y3 
x3 A 

B 

C 
D 
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has been entered, as shown in Fig. 10. The constraint equations 
6-9 of each joint have been created 8 equations according to the 
data in Table 2 (two constraint equations for each joint). It is 
necessary to specify a driver constraint equation to complete the 
set of constraint equations and the two links to which the 
actuator is attached. 
The driving constraint at joint A between links 0 and 1 as: 
                                    𝜑1 =

𝜋

4
+ 𝜔𝑡                                     (10) 

Where the angular velocity constant ω is considered for the 
validation by 4π [1]. 

Table. II   Joints configuration and location 

Joint Type Link i xi yi Link j xj yj 

A Revolute 0 0 0 1 -1 0 

B Revolute 1 1 0 2 -1.75 0 

C Revolute 2 1.75 0 3 0 0 

D Prismatic 3 0 0 0 0 0 

 

 
Fig. 10   The local position and configurations of any joint. 

Fig.11, Fig.12, and Fig.13 show the output results of the 
KAGPM program, the position, velocity, and acceleration of 
the slider. 

 
Fig. 11 Time history of the position of the slider. 

 

 
Fig. 12    Time history of the velocity of the slider. 

 
Fig. 13   Time history of the acceleration of the slider. 

 

 
Fig. 14   The position of the slider by KAGPM and Haug [1]. 

 

 
Fig. 15   The velocity of the slider by KAGPM and Haug [1]. 

 

 
Fig. 16   The acceleration of the slider by KAGPM and Haug [1]. 
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Fig.14, Fig15, and Fig16 show the comparison between the 
KAGPM results and the published results with the same 
conditions by Haug [1]. Clearly, the results are in total 
agreement with the good visualization of kinematics by the 
KAGPM program. 

VII.  PARAMETRIC STUDY OF SOME EFFECTIVE PARAMETERS 
For more validation of the proposed KAGPM program in 

different conditions and with different parameters, a parametric 
study of some effective parameters on the response of the 
mechanisms, the initial conditions with different time intervals, 
and the length of the connecting rod, has been investigated. 

A. Effect of the initial conditions (crank angular velocity). 

In the validation, the system has been investigated at an initial 
angular velocity of the crank ω=4π (rad/s), which remains 
constant during the interval of time as indicated refer to (10). In 
this part, the effect of the initial angular velocity of the crank 
has been studied during three different intervals of time to reach 
the same final angular velocity ωf = 4π (rad/s) in all cases with 
the last second. The computational process has been carried out 
using Laptop DELL, Processor Core i7-5500U CPU, 2 cores, 4 
threads, 3 Ghz, and RAM of 16 GB. 
 
   The first interval of time is from 0 to 1.5 seconds. The angular 
acceleration needed in the transient period of time (0: 0.5 s) to 
reach the final angular velocity ωf = 4π (rad/s) when the system 
starts its motion from rest is angular acceleration α=8π (rad /𝑠2). 
 
  The computational time needed for the transient state (0:0.5 s) 
is (33 min), while the time needed for the steady state period of 
time (0.5:1 s) is (3 min). 
 

 
Fig.17 The position of the slider during the time interval (0:1.5 s) 

 
  

 
Fig.18 The velocity of the slider during the time interval (0:1.5 s) 
  

 
Fig.19   The acceleration of the slider during the time interval 
(0:1.5 s).    
 
Fig.17, Fig.18, and Fig.19 show the time history of the slider 

position, velocity, and acceleration during an interval of time 
from (0 to 1.5 s). The response of the system is divided into two 
stages. The first stage is a transient stage from (0 to 0.5 s) where 
the velocity and acceleration response are less than the response 
in the steady state stage. The inertia effect on the slider has been 
improved when the system starts its motion from rest. The 
second stage is a steady state stage from (0.5 to 1.0 s) which is 
in total agreement with the case of initial angular velocity. 

 
The second interval of time is from 0 to 2.0 second. The 

angular acceleration needed in the transient period of time 
(0:1.0 s) to reach the final angular velocity ωf =4π(rad/s) when 
the system starts its motion from rest is α=4π (rad /𝑠2). 
 
  The computational time needed for the transient state (0:1.0 s) 
is (75 min), while the time needed for the steady state period of 
time (1.0: 2.0 s) is (9 min).  
 

 

 
Fig. 20 The position of the slider during the time interval (0:1.5 s) 

 
  

 
Fig. 21 The velocity of the slider during the time interval (0:1.5 s) 

 

INTERNATIONAL JOURNAL OF MECHANICS 
DOI: 10.46300/9104.2023.17.2 Volume 17, 2023 

E-ISSN: 1998-4448 13



 

 

 
Fig. 22 The acceleration of the slider during the time interval (0:1.5 s). 

 
Fig.20, Fig.21, and Fig.22 show the time history of the slider 

position, velocity, and acceleration during an interval of time 
from 0 to 2.0 second. The response of the system is divided into 
two stages. The first stage is a transient stage from (0 :1.0 s) 
where the velocity and acceleration response are less than the 
response in the steady state stage. The inertia effect on the slider 
has been improved when the system starts its motion from rest. 
The second stage is a steady state stage from (1.0 to 2.0 s) which 
is in a total agreement with the case of initial angular velocity. 

 
The third interval of time is from 0 to 3.0 second. The angular 

acceleration needed in the transient period of time (0:3.0 s) to 
reach the final angular velocity ωf = 4π (rad/s) when the system 
starts its motion from rest is α = 2π (rad /𝑠2). 
The computational time needed for the transient state (0:2.0 s) 
is (240 min), while the time needed for the steady state period 
of time (1.0:2.0 s) is (17 min).  

 
 

 
Fig. 23 The position of the slider during the time interval (0:3.0 s). 

 
  
 
 

 
Fig. 24 The velocity of the slider during the time interval (0:3.0 s). 

 
 

 
Fig. 25 The acceleration of the slider during the time interval (0:3.0s). 

 
 

Fig.23, Fig.24, and Fig.25 show the time history of the slider 
position, velocity, and acceleration during an interval of time 
from 0 to 3.0 second. The response of the system is divided into 
two stages. The first stage is a transient stage from (0 to 2.0 s) 
where the velocity and acceleration response are less than the 
response in the steady state stage. The inertia effect on the slider 
has been improved when the system starts its motion from rest. 
The second stage is a steady state stage from (2.0 to 3.0 s) which 
is in a total agreement with the case of initial angular velocity. 

B. Geometric effect (length of the connecting rod). 

In this part the effect of the geometric of the mechanism has 
been studied with different lengths of the connecting rod while 
the crank length is constant for all cases. The effect has been 
investigated on the kinematic performance of the mechanism. 
As declared in the previous section, the effect of the initial 
conditions on the performance of the mechanism, the kinematic 
analysis of the mechanism in this investigation has been carried 
out during the time interval from (0 to 2.0 s) and the system 
started its motion from rest. Three different lengths of the 
connecting rod have been considered in the investigation         
2.5 (m), 2.2 (m) and 2.1 (m). 

 
Fig.26, Fig.27, and Fig.28 show the position, velocity, and 

acceleration of the slider with the three proposed length 
compared with the original one in the previous section 3.5(m). 
the figures show that the sensitivities of the kinematic response 
of the mechanism to the length of the connecting rod. The 
acceleration and velocity of the slider affected by the length of 
the connecting rod which increase by decrease the length of the 
connecting rod. The inertia effect on the slider has been 
improved by increase the connecting rod length. 

 

 
Fig. 26   The position of the slider with different length of 

connecting rod. 
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Fig. 27   The velocity of the slider with different length of 

connecting rod. 

 
Fig. 28    The acceleration of the slider with different length of 

connecting rod. 
 

 

VIII. CONCLUSION 
The kinematic analysis of the planar mechanisms has been 

studied using constraint properties between links and joints. A 
joint library has been built by two types of joints (revolute and 
prismatic) and is modeled to be extended in the future. 
Kinematic Analysis of General Planer Mechanisms (KAGPM) 
has been described and implemented through the Graphical 
User Interface in MATLAB. To validate the quality and 
efficacy of the KAGPM program, the kinematic performance of 
the slide-crank mechanism has been evaluated. The results 
demonstrated a clear correlation with a published result with the 
same conditions and geometry by Haug. For more validation of 
the program, the effect of some effective parameters has been 
investigated (geometric of the mechanism- the initial conditions 
and the response of the mechanism in the transient state).  
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