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Abstract—This article focuses on researching new 

concepts of global sensitivity analysis, which are directly 

oriented to reliability and the limit states of structures. A 

primary case study is performed to compare total 

sensitivity indices oriented to probability and design 

quantiles. The obtained results show that although the 

values of the total indices may differ, the sensitivity 

ranking is the same. Contrast functions are a suitable 

theoretical basis for sensitivity analysis. Reliability 

sensitivity analysis can be performed by following the 

concept of standard EN 1990 using design quantiles. The 

design quantiles of resistance and load are a suitable 

alternative to directly computing the probability of failure. 

Global sensitivity analysis oriented to design quantiles has 

proven helpful in measuring the influence of input 

variables on structural reliability. 

 

Keywords—Sensitivity analysis, reliability, quantile, 

failure, failure probability, structure.  

I. INTRODUCTION 

HE research into the reliability of building structures is 

usually based on the probability of failure Pf and 

stochastic computational models [1, 2]. Alternative 

verification of structural reliability may be based on design 

quantiles as described in standard EN 1990 [3]. Estimating the 

design quantiles of resistance and load makes it possible to 

determine whether a design is reliable (when the resistance 

quantile is higher than the load quantile) or not (when the 

resistance quantile is lower than the load quantile).  

The assessment of reliability using design quantiles does not 

require the direct calculation of Pf. The advantage of design 

quantiles is the quick and straightforward assessment of the 

reliability or unreliability of a structure based on quantile 

estimates using characteristic values and partial safety factors 

[4]. 

An essential supplement to structural reliability analysis is 

sensitivity analysis. Sensitivity analysis based on the outputs of 

engineering models differs in the subject of interest and 

employed computational methods, see, e.g., [5-9]. Traditional 

 
 

sensitivity analysis aims to determine how the variability of 

input parameters affects the output value [10]. The widely 

used approach of Sobol’s sensitivity analysis is based on the 

decomposition of the output variance. Each member of the 

decomposition represents part of the contribution of the input 

(or group of inputs) to the output variance [11, 12]. Sobol’s 

SA is very popular, and many researchers have applied 

Sobol’s SA in their studies, see, e.g., [13-17].  

However, research does not usually end with the 

procurement of the output as a random variable or histogram. 

Additional statistical estimates such as quantiles or Pf are 

needed to analyse structural reliability. Reliability-oriented 

sensitivity analysis (ROSA) is generally aimed at quantifying 

the importance of input variables to the structural reliability 

[18, 19], see also [20-23]. Furthermore, ROSA aimed at Pf 

analyses the influence of random input variables on the failure 

probability as the primary and most crucial measure of 

reliability [18, 19]. 

An alternative approach to the study of reliability is based 

on design quantiles, whose magnitudes and relationship to Pf 

are described in [3]. A research gap is global sensitivity 

analysis methods oriented to alternative reliability measures, 

such as design quantiles and the reliability index  [3]. 

Although the principles of reliability applied in [3] are well 

developed and historically verified, their application in ROSA 

is still a poorly managed task. Reliability assessment of 

standard [3] is based on design reliability conditions using 

design quantiles. By comparing the load and resistance 

quantiles, we can decide if the limit state has been reached or 

not, even though Pf is not estimated. The influence of random 

input variables on design quantiles can be studied using 

quantile-oriented sensitivity analysis (QOSA). 

One type of QOSA is sensitivity analysis based on contrasts 

[24]. Contrast functions study variability according to the 

subject of interest, e.g., changes around the mean are 

significant for variance, changes around the quantile are 

significant for quantile, etc. Building on the contrast, new 

types of sensitivity analysis were introduced based on the 

quantile deviation or the square of the quantile deviation [25, 

26]. A different approach is presented by the sensitivity 

measure based on the mean distance between quantiles and 
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conditional quantiles [8] rather than the mean distance 

between average contrast functions, as in the case of quantile-

oriented sensitivity indices.  

It can be noted that QOSA has the sum of all indices equal 

to one [24]. QOSA can assign input variables a sensitivity 

ranking similar to Sobol’s sensitivity analysis, even though the 

values of the first- and higher-order sensitivity indices can vary 

significantly. The differences are mainly in the values of the 

interaction effects, where contrast shows very high interactions 

compared to Sobol’s sensitivity analysis. Although variance is 

one of the factors influencing the quantile, the quantile is 

influenced by the whole probability distribution of the model 

output with a significant influence of outliers and their 

interactions. Many of these and many other issues remain 

unresolved and require further analysis. 

In structural mechanics applications, the use of total indices 

to study the sensitivity ranking of the effects of input variables 

on the quantile and comparisons with other methods have been 

published in [27, 28]. The main challenge of quantile-oriented 

sensitivity analysis is integrating it into the concept of limit 

states to make it a valuable tool for structural reliability 

analysis. 

II. GENERAL PRINCIPLES OF STRUCTURAL RELIABILITY 

The general principles of structural reliability are described 

in standard EN 1990 [1] and ISO 2394 [29]. Two types of 

limit states are typically verified: ultimate limit states and 

serviceability limit states. Reaching the limit state is a random 

phenomenon influenced by several significant uncertainties 

that depend on the nature of the structure, the environmental 

conditions and the applied activities. In general, the following 

types of uncertainties can be identified: 

 

- Random nature of material properties, geometric 

characteristics and loads. 

- Statistical uncertainties due to the limited size of the 

available data. 

- Uncertainties of resistance and load effects in computational 

models due to the simplification of actual conditions. 

- Vagueness due to inaccurate definitions of performance 

requirements. 

- Gross errors in design, implementation and use. 

- Lack of knowledge about the behaviour of new materials in 

real conditions. 

Natural randomness and statistical uncertainties can be 

described using the available probability theory and methods 

of mathematical statistics [1, 2]. The basis of the probability 

theory is a continuous or discrete random variable whose value 

depends on a random event. The geometric and material 

characteristics of structures are generally continuous random 

variables. In contrast, the failure of the structure is a binary 

random variable that attains the value of 1 (failure) or 0 

(success). The classic Monte Carlo method is the traditional 

method for estimating the model output's random realisations. 

By improving the Monte Carlo method, other efficient 

methods for estimating the probability of failure in engineering 

reliability have been developed [30]. However, the efficiency 

is usually obtained by strong assumptions as many methods 

trading generality for efficiency. 

A well-established method with high efficiency is the first-

order reliability method FORM [3], which analyses the 

reliability of a structure using the first two statistical moments 

of the model output, see, e.g., [31]. The Latin Hypercube 

Sampling method is usually used to efficiently estimate the 

first two statistical moments [32, 33]. Although the Monte 

Carlo method is numerically demanding, its use is 

experiencing a partial comeback due to increasing computing 

power. The method which improve efficiency with no 

significant loss in generality is stratified sampling [34, 35]. For 

instance, the article [36] proposes a new Monte Carlo-based 

method, which can be seen as a variant of stratified sampling. 

Metamodels and Response Surface methods present a separate 

area of research [30]. 

Although the uncertainties of computational models cannot 

be eliminated entirely, they can be assessed to some extent by 

theoretical and experimental research. The EN 1990 [3] 

standard provides the basic concept and techniques for 

analysing structural reliability. Although various types of 

uncertainties are becoming more significant, the standards [3, 

29] do not include methods for quantifying the importance of 

all the different types of uncertainties. This article aims to 

introduce tools of sensitivity analysis, whose background 

concept techniques and theoretical bases can be used to 

quantify uncertainty. 

III. RELIABILITY ORIENTED SENSITIVITY ANALYSIS 

The aim of structural reliability analysis is the estimation of 

the theoretical failure probability, defined as:  

 

 0 ZPPf
. (1) 

 

where Z = g(X) is a random variable called safety margin, 

which is a function of a random vector X = {X1, X2, …, Xn}T, 

where n is the number of random input variables. It is assumed 

that variables X are statistically independent, a common 

assumption of global sensitivity analysis that builds on Sobol 

[24]. The global sensitivity analysis methods applied in this 

article are not limited in terms of the type of probability 

density functions (pdf) of X or the stochastic model used for 

the estimation of Pf. In engineering applications, Pf is usually a 

small value that must be lower than the target failure 

probability Pft when reliability is of interest [23]. 

Probabilistic reliability analysis based on Pf quantifies 

reliability much more accurately than engineering analysis of 

reliability based on Eurocode standards. As a result, more 

load-bearing and reliable structures can be designed at a lower 

cost. However, these benefits are not free. The disadvantage is 

the high computational costs in optimisation analyses and the 

increased demand for input data of stochastic computational 

models, which can be guaranteed during the design and 
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construction of the structure but may change during the use of 

the structure from the beginning to the end of its service life. 

Therefore, care should be taken in the design of structures, 

especially for those parameters that have a significant 

influence on reliability and, at the same time, may change 

during the structure's lifetime. Identifying these parameters is 

possible using ROSA oriented to Pf or design quantiles. 

A. Sensitivity Analysis of Failure Probability 

In structural reliability analysis, sensitivity analysis can be 

used to measure how the input variable influences the failure 

of a structure [5]. ROSA oriented to Pf was introduced in [18, 

19]. The sensitivity indices oriented to Pf are based on the 

decomposition of the variance V(1Z<0) of a binary function 

(failure, success) building on Sobol decomposition [11, 12], 

where the sum of all indices is equal to one and each index is 

non-negative.  

The first-order probability contrast index Ci is defined in 

[24]. For practical use, the first-order probability contrast 

index Ci can be written in the form first introduced in [22]: 

 

    
 ff

ififff

i
PP

XPXPEPP
C






1

11 , (2) 

 

where the mean value E[·] is considered over all random 

realisations of Xi and Pf(1- Pf) is the variance of the Bernoulli 

distribution of the binary outcome: success (0) or failure (1). 

The same indices can be obtained using the contrast function 

[24], where Pf is a minimizer. The second-order sensitivity 

index Cij can be calculated similarly using the fixation of two 

random input variables: 

 

     
  ji

ff

jifjifff

ij CC
PP

XXPXXPEPP
C 






1

,1,1
. (3) 

 

Additional sensitivity indices, which quantify higher-order 

interaction effects, can be formulated similarly. Examples 

demonstrating the rationality of Pf-oriented sensitivity indices 

have been presented in many engineering applications, e.g., 

[37-39]. The sensitivity indices are either positive or zero. The 

sum of all sensitivity indices must be equal to one. 

Estimating all 2n-1 sensitivity indices can be 

computationally demanding, and the effects of the individual 

input variables may be dispersed in numerous interaction 

effects. Due to the simple determination of the sensitivity 

ranking, it is more practical to calculate the total indices that 

quantify the influence of variable Xi, including all interaction 

effects with the other variables. 

 

     
 ff

ififff

Ti
PP

XPXPEPP
C






1

11
1

~~ . (4) 

 

where X~i denotes input random variable Xi and fixed 

variables (X1, X2,…, Xi–1, Xi+1,…, XN). 

Equations (2), (3) and (4) are directly oriented to Pf. 

Therefore, the sensitivity analysis conceived in this manner 

directly quantifies the influence of random input variables on 

reliability, measured by the value of Pf.   

B. Sensitivity Analysis of Quantile 

Quantile-oriented sensitivity analysis examines changes 

around the -quantile of output Y caused by changes in input 

variables X = {X1, X2, …, Xn}T. Changes around the -quantile 

are quantified by the contrast function .  

 

            YEYψE R1,ψ . (5) 

 

where Y is a scalar output. Equation (5) becomes a 

sensitivity measure if the argument  has a value equal to -

quantile.  

 

      


  YE R1 Argminψ Argmin* . (6) 

 

where * is equal to the -quantile of Y. When * is used, 

the contrast function  reaches its minimum, which can be 

written in the form using the quantile deviation l: 

 

       





11ψ **
* lYE

R
. (7) 

 

where l is -quantile deviation [25, 26] of model output Y 

with probability density function f(y).  

 

   

  

  

ileSuperquant

eSubquantil

dyyfydyyfyl 








*

*

1

11







. (8) 

 

The quantile deviation l is defined as the difference between 

superquantile E(Y|Y ≥ *) and subquantile E(Y|Y < *). The 

quantile deviation l was first introduced as a sensitivity 

measure in [25, 26]. The first-order probability contrast index 

Qi based on the quantile deviation l can be written as: 

 

 
l

XlEl
Q

i

i


 , (9) 

 

where the mean value E[·] is considered over all random 

realisations of Xi. The second-order -quantile sensitivity 

index Qij is formulated similarly by fixing pairs Xi, Xj. 

 

 
ji

ji

ij QQ
l

XXlEl
Q 




,
, (10) 

 

 where E[·] is considered across all random realisations of 

Xi and Xj. The sum of all sensitivity indices must be equal to 

one.  

The influence of variable Xi, including all interaction effects 

with other variables, is quantified by the total index QTi. 
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
 . (11) 

 

where X~i denotes input random variable Xi and fixed 

variables (X1, X2,…, Xi–1, Xi+1,…, XN). 

Comparing sensitivity indices Qi, Qij, etc., with classical 

Sobol’s SA indicates the difference in the quantile deviation l 

and variance unit. It can be shown that replacing the quantile 

deviation l with its square is essential in the search for a 

sensitivity measure useable in engineering tasks.  

The first-order probability contrast index Ki based on l2 

(square of quantile deviation) can be formulated as: 

 

  
2

22

l

XlEl
K

i

i


 , (12) 

 

where the mean value E[·] is considered over all random 

realisations of Xi. The second-order sensitivity index Kij can be 

formulated by fixing pairs Xi and Xj. 

 

 
ji

ji

ij QQ
l

XXlEl

K 


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
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2

22 ,
, (13) 

 

 where E[·] is considered across all random realisations of 

Xi and Xj. The sum of all sensitivity indices is equal to one. 

The influence of variable Xi, including all interaction effects 

with other variables, is quantified using the total index QTi, 

which can be formulated as: 

 

  
2

2

~
2

1
l

XlEl
K

i

Ti


 . (14) 

 

where X~i denotes input random variable Xi and fixed 

variables (X1, X2,…, Xi–1, Xi+1,…, XN). 

Total order sensitivity indices take into account both the 

main, second order and higher order effects, which involves 

the evaluation over a full range of input parameter space. 

Although the sensitivity indices of the first, second and higher 

orders are essential for a complete description of all main and 

interaction effects, total indices CTi, QTi, and KTi are of more 

practical use as they facilitate the determination of the 

sensitivity ranking at a reasonable computational cost. 

IV. NUMERICAL EXAMPLE 

This section presents a stochastic computational model of a 

load-bearing steel member subjected to axial tension. The 

subject of the analysis is the ultimate limit state. A steel bar is 

considered without failure if the difference between resistance 

R and load E is greater than zero: 

 

ERZ  . (15) 

 

Load action E consists of two load cases, E1 and E2, with 

Gauss pdf; see Table I.  

 

21 EEE  . (16) 

 

Both load cases are considered statistically independent. 

Since E1 and E2 have Gauss pdf, product E also has a Gauss 

pdf. 

TABLE I 

INPUT RANDOM VARIABLES OF LOAD ACTION 

Characteristic Pdf Mean value St. deviation 

Load action E1 

Load action E2 

Gauss 

Gauss 

201.604 kN 

28.364 kN 

24.2 kN 

23.9 kN 

 

The resistance R is a random variable with the unit kN. The 

resistance is a product of the yield strength fy and cross-

sectional area. The cross-section has a rectangular shape with 

dimensions a and b, see Table II. 

 

TABLE II 

INPUT RANDOM VARIABLES OF RESISTANCE 

Characteristic Pdf Mean value St. deviation 

Dimension a 

Dimension b 

Yield strength fy 

Gauss 

Gauss 

Gauss 

100 mm 

10 mm 

412.68 MPa 

1 mm 

0.46 mm 

27.941 MPa 

 

The resistance R can be calculated as the product of the 

cross-sectional area of the rectangle a·b and yield strength fy. 

 

yfbaR  . (17) 

 

The probability density function of R can be approximated 

by a three-parameter lognormal pdf using the mean value, 

standard deviation and standard skewness, which have been 

analytically derived in [25]. The mean value R, standard 

deviation R and standard skewness of R areR = 412.7 kN, R 

= 34.1 kN and 0.11. Using a three-parameter lognormal pdf, Pf 

can be computed from (1) using the integral 

 

   




 yyyP ERf d . (18) 

 

where E(y) is a Gauss pdf of load action, R(y) is a three-

parameter lognormal distribution function of R. The value of 

the integral is estimated numerically following the algorithms 

for practical calculation published in [25, 40]. 

The random input variables are chosen so that the standard 

deviation of E is approximately the same as the standard 

deviation of R. This is so that the results of the sensitivity 

analysis of Pf can be compared with the results of the 

sensitivity analysis of the design quantiles. The general cases 

of the standard deviations of load and resistance and their 

possible influence on the sensitivity analysis results are 

discussed in the following chapters. 

V. THE RESULTS OF SENSITIVITY ANALYSIS 

Sensitivity indices of Pf are computed numerically using 
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integration (18). Integration in (18) is performed by Simpson’s 

rule, employing more than ten thousand integration steps over 

the interval [Z−10Z,Z+10Z] of the limit state function 

(15). The mean values E[·] in (2), (3) and (4) are computed 

numerically using algorithms of numerical integration [25, 40].  

Figure 1 shows the results of the sensitivity analysis of Pf, 

which quantify the influence of five input variables, E1, E2, a, 

b, and fy, using all main and interaction effects. This 

calculation is complete but tedious, and the effects of the input 

variables are dispersed in the interaction effects. Therefore, it 

is better to determine the sensitivity ranking by calculating and 

analysing the magnitudes of the total indices. Total indices 

quantify the contribution of Xi, including all effects caused by 

its interactions, of any order, with any other input variables. 

The greater the value of the total index, the greater the 

influence of the input variable on the studied output (Pf or 

quantile). 

 

Fig. 1 Global sensitivity analysis of Pf – all indices. 

 

The total indices can be obtained by determining the 

sensitivity indices of all orders or directly using (4), see Fig. 2. 

The direct calculation using (4) is more efficient because it 

does not require calculating the first- and higher-order indices 

but only the total indices are sufficient to determine the 

sensitivity ranking. Figure 2 shows that the sensitivity ranking 

determined from the sensitivity analysis of Pf is fy, E1, E2, b, a. 

Although fy is the dominant variable, the effects of E1 and E2 

are comparable to the effect of fy.  

Quantile-oriented sensitivity analysis was computed for 

0.9963-quantile of E and 0.001-quantile of R [25]. If E < Ed 

and R > Rd, the failure probability is smaller than 7.2E-5 [3].  

 

 
Fig. 2 Global sensitivity analysis of Pf – CTi indices. 

 

Figure 3 shows the total indices QTI computed according to 

(11). Figure 4 shows the total indices KTI computed according 

to (14). Total indices QTI and KTI are quantile-oriented, so the 

load effect is analysed independently of the resistance.  

 

 
Fig. 3 Global sensitivity analysis of Pf – QTi indices. 

 
 

Fig. 4 Global sensitivity analysis of Pf – KTi indices. 

 

Although the total indices vary, the ranking of the input 

variables from the most influential to the least influential is 

always the same: fy, E1, E2, b, a. The dominant variable is the 

INTERNATIONAL JOURNAL OF MECHANICS 
DOI: 10.46300/9104.2022.16.12 Volume 16, 2022

E-ISSN: 1998-4448 102



 

 

yield strength fy. The second dominant variables are the load 

effects E1 and E2. The variability of random variables a and b 

has the most negligible effect on the reliability. Neglecting the 

random variability of a has a negligible effect on Pf or the 

quantile, which was verified numerically.  

VI. DISCUSSION 

The concept of limit states is based on the separate effect of 

resistance and load, making it possible to evaluate both 

quantities separately. As a result, reliability can be assessed by 

comparing the design quantiles of resistance and load more 

efficiently than by directly calculating Pf.  

The research aims to find a comprehensive concept of 

global sensitivity analysis with the separate analysis of load 

and resistance. Although the loss of interaction effects between 

load cases and input variables influencing the resistance is not 

yet resolved, the case study results suggest the possibility of 

effectively using total sensitivity indices to identify the 

sensitivity ranking. Cross interactions between the load and 

resistance may not be meaningful when determining the 

sensitivity ranking if total indices are used and the load and 

resistance variances have the same value, see Fig. 5. Then, the 

sensitivity ranking of the design quantiles is the same as the 

sensitivity ranking determined using the sensitivity analysis of 

Pf. 

 

 
 

Fig. 5 Limit state design based on design quantiles. 

 

In general, the variance of the load may be more or less 

different from the resistance. The sensitivity analysis of Pf 

based on the decomposition of the variance V(1Z<0) quantifies 

the influence of input variables on the load and resistance side, 

including all interaction effects between input variables. The 

total indices of the design quantile can be corrected by weights 

based on the FORM sensitivity factors E, R of the standard 

[3].  

 

,,
2222
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R
R

RE

E
E















  with  1 . (19) 

 

For example, suppose the standard deviation of the load 

prevails. In that case, the total indices of the load are increased 

by the appropriate weighting factor E, where E > R. 

Another example, if (theoretically) the standard deviation of 

resistance was equal to zero, the total indices of resistance are 

equal to zero because they are multiplied by weighting factor 

E = 0. A detailed concept of weighting factors can be 

proposed based on their application in global sensitivity 

analysis, see, e.g., [25]. 

In practical applications, the reliability of structures with 

many load cases is often addressed. The decision-maker needs 

some indication of how sensitive the choices will be to 

changes in one or more inputs [41, 42]. For reliability models, 

the sensitivity analysis shows which load cases and their 

combinations significantly influence the reliability and which 

structural elements can be overloaded. For more complex 

structural models, the effects of other structural properties, 

such as boundary conditions, damping properties, material 

constants and geometric parameters, on the static and dynamic 

structural responses can be analysed. The goal of practical 

applications is an optimal design that seeks a compromise 

between high reliability and low cost of the load-bearing 

structure. 

It can be noted that the concept of design conditions of 

reliability of the standard [3] using sensitivity factors E, R is 

based on the assumption of Gauss pdf of load and resistance 

and, therefore, cannot be fully applied to extreme distributions 

such as Gumbel or Weibull pdf. Nevertheless, the design 

conditions of reliability do not strictly require Gauss pdf, but 

other shapes close to the Gauss pdf are tolerated and can be 

considered Gauss-like in engineering applications [43, 44]. 

The shape of the pdf of resistance usually deviates a little from 

the Gauss pdf due to small skewness, but there may be more 

significant differences in the load. Gumbel or Weibull pdf is 

more common for modelling short-term and long-term single 

variation actions, while permanent load action or resistance is 

usually modelled using Gauss pdf [45]. 

On the one hand, indices oriented to Pf or design quantiles 

are easy to interpret, making them a valuable tool for analysing 

structural reliability. However, on the other hand, their 

formulations include multiple integrals, the estimation of 

which using numerical integration or Monte Carlo (or quasi-

Monte Carlo) methods requires many model simulations in 

practice, which considerably limits their use in the case of 

expensive models [46, 47]. To overcome this drawback, 

effective estimation strategies based on the use of metamodels 

based on polynomial chaos expansions [48, 49] or artificial 

neural networks [50, 51] have been proposed in literature. 

Although sensitivity indices oriented to Pf are 

computationally more time-consuming, most of the time 

needed for the numerical estimation of Pf can be saved because 

reaching the failure domain of 1Z<0 can be considered a 

consequence of a specific combination of inputs that is 

predictable. In contrast, quantile-oriented sensitivity indices 

are less time-consuming, but not as many efficient strategies 

have been developed to speed up the estimation of the quantile 

deviation because this variable is dependent on the shape of 

the entire distribution (the absolute difference between two 

average values of the population before and after the quantile). 

Furthermore, the case study [26] showed that the correlation 

between the standard deviation and the quantile deviation may 

or may not be high. In general, quantile-oriented sensitivity 

indices differ more or less from Sobol’s sensitivity indices, 
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where the results of quantile-oriented sensitivity analysis have 

a significantly higher proportion of interaction effects than 

Sobol [27, 28]. 

Other sensitivity analysis methods may be more or less 

empathetic to the reliability, even though neither the design 

quantile nor Pf is the subject of their interest [22]. For 

example, estimating the sensitivity ranking can be determined 

based on the correlation between the input and output [52], 

which do not require double-loop simulations and are therefore 

directly available as a by-product of the statistical analysis of 

the output using Monte Carlo methods. For the case study 

presented here, the correlation between input random variable 

Xi and output random variable Z is shown in Fig. 6. 

 

 
 

Fig. 6 Correlation coefficient between Z and Xi. 

 

The sensitivity ranking according to Fig. 6 is the same as 

according to the total indices in Fig. 2 to Fig. 4. The 

correlation coefficients do not analyse the interaction effects 

but provide information about the positive or negative 

influence of the input variable on the model output, see Fig. 7 

and Fig. 8. 

 

 

Fig. 7 Correlation dependence between Z and E1 (X1). 

 

 

Fig. 8 Correlation dependence between Z and fy (X5). 

Sensitivity analysis based on the correlation of the model 

output with the inputs has certain limitations, consisting of the 

condition of monotonic dependence between the input and the 

output. Correlation implies dependence, but the opposite is not 

true. In general cases, monotonic dependencies between inputs 

and outputs cannot be guaranteed for black-box type 

computational models such as those based on the finite 

element method using non-linear analysis, see, e.g., [53-55]. A 

non-monotonic relationship between input and output may 

give a weak or zero correlation even though the effect of the 

input on the output is significant [56, 57].  

Figure 9 shows an example of zero correlation corr(R, 

e0) = 0 for a case study with a strong functional dependence 

between the initial amplitude of the axial curvature e0 and the 

static resistance of a slender column subjected to vertical 

compressive load R.  

 

 

Fig. 9 Resistance of compressed column vs initial imperfection. 

The maximum elastic resistance at the Euler critical force 

level occurs for e0 = 0, see Fig. 9. The elastic resistance 

decreases if e0 decreases and e0 < 0, but the elastic resistance 

also decreases if e0 increases and e0 > 0. Although correlations 
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are a direct output of the statistical analysis of the model 

output, the results of a sensitivity analysis based on 

correlations can be misleading. 

In some instances, the relationship between input and output 

can be changed or supplemented to achieve monotonicity 

without affecting the statistics of the model output. For the 

example shown in Figure 9, a monotonic dependence can be 

achieved by introducing the absolute value of ǀe0ǀ, but with a 

restriction to cross-sections symmetric to the axis about which 

bending due to buckling occurs. The value of corr(R, ǀe0ǀ) then 

expresses the sensitivity between the amplitude of initial 

curvature ǀe0ǀ and resistance R correctly. The example shows 

that the sensitivity analysis results based on the correlation 

coefficients must be interpreted cautiously only after a 

previous analysis of the monotonic dependence between the 

output with verification for each input variable. 

Sensitivity analysis based on the model output variance is 

very popular in basic sciences [10], although the variance is 

only empathetic to reliability. The influential and non-

influential variables can also be identified by analysing the 

distribution shape [58] or neural network ensemble-based 

sensitivity analysis [59]. However, change is not directly 

studied by these methods. 

Sensitivity indices directly oriented to Pf are based on 

V(1Z<0), where the binary assumption 1Z<0 leads to a loss of 

information about the distance from the critical boundary 

Z = 0. It can be discussed whether all failures have the same 

weight (e.g., loss of stability of very slender columns) or 

whether failures with a greater distance from Z can have 

greater weight (relative failure). Loss of stability is a fatal 

failure leading to the collapse of an entire system in the case of 

statically determinate structures. However, a statically 

indeterminate structure can survive the buckling of one 

member with the support of the rest of the system. Similarly, 

exceeding the yield strength at one critical point does not 

necessarily mean the collapse of the entire system when the 

material has a plastic reserve, as is the case with lower-grade 

carbon steel. In the case of the serviceability limit state, a 

small deformation over the limit is less severe than a large 

deformation over the limit. Although it is common to model 

failure using a discrete random variable (1 failure, 0 success), 

limit states could be studied using an alternative concept that 

more appropriately considers the character of failure from 

temporary to permanent, from minor to severe and very 

critical. The question of suitable methods for studying relative 

failures and their combinations using global sensitivity 

analysis remains unanswered. 

VII. CONCLUSION 

Sensitivity analysis is one of the tools that help decision-

makers do more than just solve an engineering problem. 

Sensitivity analysis provides valuable insight into the issues 

associated with the computational model. The decision-maker 

finally gets a decent idea of how sensitive the chosen optimal 

solution is to possible changes in the input values of one or 

more parameters. 

This article introduced the concept of global sensitivity 

analysis oriented to conditional failure probability and design 

quantiles. The case study showed that reliability-oriented 

sensitivity analysis could use a common platform based on the 

concept of limit states and design quantiles. Sensitivity 

analysis of design quantiles successfully competes with 

sensitivity analysis of failure probability, although certain 

details must be addressed. The sensitivity analysis results of 

the design quantiles show the same sensitivity ranking of input 

variables as the sensitivity analysis of the failure probability if 

total indices are used.  

Although the same standard deviation of load and resistance 

was assumed in the case study, possible approaches for more 

general applications (with different standard deviations of load 

and resistance) were presented. Quantile-based sensitivity 

analysis has some advantages. Estimates of design quantiles 

are numerically less demanding than estimates of failure 

probability. Thus, the proposed concept may have promising 

applications, especially in tasks with numerically demanding 

computational models. 
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