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Abstract— In classification of classifier analysis, 

researchers have been worried about the classifier of 

existing generative and discriminative models in practice 

for analyzing attributes data. This makes it necessary to 

give an in-depth, systematic, interrelated, interconnected, 

and classification of classifier of generative and 

discriminative models. Generative models of Logistic and 

Multinomial Logistic regression models and discriminative 

models of Linear Discriminant Analysis (LDA) (for 

attribute P=1 and P>1), Quadratic Discriminant Analysis 

(QDA) and Naïve Bayes were thoroughly dealt with 

analytically and mathematically. A step-by-step empirical 

analysis of the mentioned models were carried-out via 

chemical analysis of wines grown in a region in Italy that 

was derived from three different cultivars (The three types 

of wines  that constituted the three different cultivars or 

three classifiers). Naïve Bayes Classifier set the pace via 

leading a-prior probabilities. 

 It is noted that classifier of classification can be extended 

to K-Nearest Neighbors (KNN) model such that a value for 

“K”, the number of nearest neighbors can be used as the 

classifier. 

 

Keywords— Classification of Classifiers, Discriminative 

models, Generative models, Naïve Bayes, Regression 

Models.  

 

I. INTRODUCTION 

ough categorizations of machine learning models are 

generative and discriminative algorithms. Generative 

models such as the Naïve Bayes often model 

( | )iP z y and ( )P y separately while discriminative models 

such as logistic regression model ( | )iP y z . In other words, 

the latter correspond the image samples " "z   to the class 

labels " "Y   (image classification) as opposed to image 

reconstruction, which is a characteristic of the former category. 

This implies that the generative models usually define how the 

data is generated while the discriminative model does not. A 

detailed study of these two categories was accomplished by 

[4]. 

.  

     Over the years, scholars have highlighted varying issues as 

it relates to the classification of classifier analysis of attributes 

data in practice. Ref. [6] studied how best algorithmic bias can 

be detected and mitigated when applying machine-learning 

algorithms in the making of both simple and complex decision 

processes. The effectiveness of various machines learning 

classification models have also been assessed by various 

authors [9], [2], [10], [3]. Ref. [8] specifically points out that 

the effectiveness of a machine learning solution is directly 

linked to the data’s characteristic and nature as well as the 

learning algorithm’s performance. This was the reasoning 

behind the author’s study, that is, to provide the reader with an 

in-depth understanding of the principles behind the different 
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machine learning algorithms and how they can be applied 

practically in the different facets of life.  

    This is indicative of the fact that there exist very few studies 

that are geared towards enlightening users on how, why and 

when the different learning models can be applied. Our study 

is meant to contribute to literature from this perspective. 

Through the lens of generative and discriminative machine 

learning models, we provide an in-depth, systematic, 

interrelated, interconnected and classification of classifier of 

five (5) learning algorithms namely, logistic and multinomial 

regression models, Linear Discriminant Analysis (LDA) (for 

attribute P=1 and P>1), Quadratic Discriminant Analysis 

(QDA) and Naïve Bayes. This research is meant to serve as a 

learning tool and reference guide for both researchers in 

academia as well as industry professionals  in the areas of risk 

management, cyber security, business and health to mention a 

few.  

    In the following sections of III, IV, V, VI, VII, VIII, IX and 

X; we critically look at the identified machine learning models, 

their limitations, possible interpretations of the parameters and 

the ways in which the parameters can be estimated. In section 

8, a comprehensive application is undertaken in a systematic 

manner to display the applicability of the learning techniques 

in the field of (wine) business. 

II. METHODS 

A     Background 

 

     This research work aimed to mathematically, analytically 

and interpretatively visited generative models of Logistic and 

Multinomial Logistic regression models and discriminative 

models of Linear Discriminant Analysis (LDA) (for attribute 

P=1 and P>1), Quadratic Discriminant Analysis (QDA) and 

Naïve Bayes. The generative and discriminative models be 

juxtaposed via their aims, designs, descriptions, classifications, 

classification of the classifiers’ methods, attributes, restrained 

boundaries, decision boundaries, special cases, dimensional 

functions and limitations. A classification of three classifier of 

a response variable will be used to carry out numerical 

analysis.   

III. LOGISTIC REGRESSION MODEL 

        Regression models are models designed to ascertain 

covariates that contributed to a certain response variable [7]. 

There are variants of regression models that range from the 

linear to non-linear types. In scenarios where the response 

variable can be categorized as dichotomous or binary in nature 

(that is, one or two categories, say Yes or No) for K=2 classes 

of classification, logistic regression has proved to be the idea 

generalization as propounded by [5] and [11]. Instead of 

modeling the dependent variable, say, “Y” directly, the non-

linear logistic regression model will be the appropriate 

generalization in order to estimate the probability that “Y” 

belongs to a particular paradigm as claimed by [12] and [1]. 

For example, if in a regression set-up of tossing a coin data for 

nth trials with some deterministic measurements of exogenous 

or independent variable(s) (be it discrete or continuous), say 

“Z”. The category here is of either a Head or Tail. If the 

interest is to find the logistic regression model that the 

probability belongs to head, then the probability of “Head” 

given “Z” can be written as  

            | HeadP Y Coin                                                   (1) 

    The values of P(Y = coin|head), that can be acronym as 

P(Head) will range between 0 and 1, that is,  0 1P Head  . 

The category of “Head” can be assigned “1”, while “Tail” can 

be assigned “0”. This means a generic code of 0/1 is used for 

the response variable. The question is how should the 

relationship between P(Z) = P(Y = 1|Z) and “Z” be modeled? 

Considering using a simple (Single Predictor of “Z”) linear 

regression to typify these probabilities: 

       
0 1P( )Z Z                                                              (2)         

     This makes it easy to predict Y=Coin-using Head, the 

solution model for prediction is as shown in equation (3) 

below. The main problem here is the required technique for 

estimating the prediction: for Heads approaching zero 

estimates, negative probability of coin would be predicted. In 

case the prediction for Heads is very large, one could get 

values greater than 1. These predictions are not reasonable 

because ideally the true probability of coin, regardless of 

“Head” or “Tail” surfaces must lie between 0 and 1 

inclusively. The lacuna is not peculiar to “Head” or “Tail” 

outcome of tossing of a coin only. Often time a straight line is 

fitted to a dichotomous dependent variable with generic code 

of 0/1, the governor bedrock is always P(Z)<0 for some values 

of “Z” and P(Z) > 1 for others that were not captured in 

P(Z)<0. To overcome this lacuna, P(Z) must be modeled using 

a function that enables outputs of “Z” to lie between 0 and 1 

inclusively, that is, 0 1Z    Zs  . A few functions has 

been formulated to meet-up this delineation, but the noted one 

is the logistic function of equation (3) below, 

               
0 1

0 11

Z

Z

e
P Z

e

 

 







                                               (3) 

      Fitting equation (3) requires methods like Maximum 

Likelihood (ML), Reweighted Iterative Procedure etc., but the 

ML method would be employed in this work. Considering 

equation (3) with coin data, it is to be noted that few “Heads” 

in nth trail of tossing a coin, the prediction of “Y” would be 

very close to zero, but can never go below zero. Similarly, 

many “Heads” in nth trail of tossing a coin, the prediction of 
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“Y” will yield probability one, but never exceeded one. The S-

shaped curve is the product of the logistic function of equation 

(3) for single variable “Z”, irrespective of the value of “Z”. 

Manipulatively, equation (3) can be written as: 

                                                                               

         0 1
( )

1 ( )

ZP Z
e

P Z

 



                                                         (4)  

    The logistic regression model is known to be able to capture 

range of probabilities in comparison to just linear regression. 

The magnitude 
( )

1 ( )

P Z

P Z
 is usually referred to as the odds, 

such that is takes values
( )

0
1 ( )

P Z

P Z
  


. Odd values close to 

the boundary of zero and infinity indicate low and high 

probabilities of the coin respectively. Odds are customarily 

used instead of probabilities. Taking the logarithm of equation 

(4) gives 

                                                               

     0 1

( )
log

1 ( )

P Z
Z

P Z
 

 
  

 
                                               (5) 

    Moreover, is referred to as logarithms of odds or logit (that 

is, logistic regression model has a logit that is linear in “Z”). 

B     Interpretation 

          It connotes that an increment in “Z” by one-unit alters 

the logarithms of odds in equation (5). In equal manner, it 

manifolds the odds by 1e


 in equation (4). Since the 

relationship between P(Z) and “Z” is always non-linear, 1  

does not jibe to the alternation in P(Z) that associate to one-

unit increment in “Z”. The magnitude that P(Z) alters due to a 

unit alternation in “Z” lies solely on the current value of  “Z”. 

Irrespective of the magnitude of “Z”, if 1  is positive, then 

increasing “Z” will simply imply an increment in P(Z).  

Similarly, if 1  is negative, then decreasing “Z” will simply 

connote a decrement in P(Z). In a nut shell, the rate of 

alternation in P(Z) per unit alternation in  “Z” lies solely on the 

current value of  “Z”. 

 

  C    Estimating the Logistic Regression Coefficients  

        The coefficients 0  and 1  in (5) are unknown and can 

be estimated based on the available training of the data via 

                                                     

 0 1

, 0 , 1

( , ) 1 (z ) (z )i i

if y if y

p p 
 

                                    (6)                               

The estimates 0  and 1  are chosen to maximize this 

likelihood function.  

 

IV. MULTINOMIAL LOGISTIC REGRESSION 

     Logistic regression model with K = 2 classes of 

classification for dependent variable “Y”. In situation where 

predicting response uses multiple predictors coupled with 

classes of classification is strictly greater than two 

(generalization in terms of multiple predictors and more than 

two classes of classification), that is setting of K>2 classes. 

This kind of extension is referred to as multinomial logistic 

regression. In this kind of setting, a single class would be 

firstly selected as benchmark such that no loss of particularity 

about the selected Kth class. 

Then equation (3) can be replaced by  

 
0 1 1

0 1 1

1

1

/ Z

1

k k kp p

k k kp p

z z

K
z z

i

e
P Y k z

e

  

  

  


  



  


  1, , 1k K                                                              

                                                                                          (7)      

 
0 1 1

1

1

1
/ Z

1 k k kp p

K
z z

i

P Y k z

e
  


  



  


                         (8)                                    

The logarithm of odds or logit for multinomial logistic 

regression is:                                  

 

 
0 1 1

/ Z
log

/ Z
k k kp p

P Y k z
z z

P Y K z
  

  
       

            (9)                            

So,                                      

 

 
0 1 1log

1
k k kp p

p Z
z z

p Z
  

 
      

                         (10)                     

Where  1, , pZ Z Z  for “p” predictors or independent 

variables.  We have described how to model a logistic and 

multinomial logistic regression using logistic functions of 

equation (5) and equation (10) via a direct approach of 

 P Y k Z z  . Another approach will be needed for both the 

logistic and multinomial logistic regression when there is 

considerable large margin between the two classes (for logistic 

regression) or among K-classes for multinomial logistic 

regression, which usually lead to their coefficients, s  been 

shockingly unstable. Additionally, when the distribution of “Z” 

within each class of “K” is known to be normally distributed 

and the sample size is small, the logistic and multinomial 

regressions are no accurately reliable.  

      Considering an alternative and not crooked approach for 

estimating the probabilities of logistic and multinomial 

regressions, such that the distribution of the independent 

variables “Z”  are modeled separately in each classes of the 

response variable “Z”. The Bayes’ theorem can be used to 

tumble into estimating  |P Y k Z z   especially when the 
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distribution of “Z” within each class of “K” is known to be 

normally distributed. Assuming classifying measurements into 

one of K-classes, such that 2K  .  In a simplified term, the 

qualitative measurement of “Z” can assume values of K-

possible non-identically and irregular measurements. Let 

k denote the total or prior probability that a “Z” measurement 

emanates from the thK  class. Furthermore, let 

 ( ) |kg Z P Z Y k   denote the density function of “Z” of 

measurement emanates from the thK  class. Alternatively, 

( )kg Z  is referencing large if there is high chance that a 

measurement in the thK class has Z z and ( )kg Z is small if 

there is no chance that a measurement in the thK class has 

Z z . Then the Bayes’ theorem mathematically,    

      

 

 

1

(z)
| Z

(z)

k k

K

i i

i

g
P Y k z

g






  


                                   (11)                 

    The notation  ( ) |kP Z P Y k Z z   stands for the 

posterior probability that a measurement Z z falls to the 

thK class. In other words, it is the probability that a 

measurement belongs to the 
thK class, given the value of the 

independent variable “Z”.  Equation (11) postulates an 

alternative direct computation of posterior probability (z)kP of 

logistic and multinomial regression. Computational wise, 

estimation of 
k  can be done via a random sample from 

population as fraction of trained observations that falls into 

thK class. However, it might be difficult to estimate (z)kg , 

expect when some modifying and simplifying assumptions are 

made. The Bayes classifier can now be used to estimate 

(z)kg via classification of an observation say “z” to the 

category for which (z)kg  is of high magnitude, possessed the 

lowest possible error rate out of all the classifiers. This can 

only be true and possible via correct specification of terms in 

equation (11). However, (z)kg can be estimated via some 

classifiers, then plug into equation (11) for proper 

approximation of the Bayes classifier.  

    Three different classifiers that use different estimates of 

(z)kg of equation (11) will be used as correctness for the 

Bayes classifier: Linear Discriminant Analysis (LDA), 

Quadratic Discriminant Analysis (QDA), and Naïve Bayes. 

 

V. LINEAR DISCRIMINANT ANALYSIS (LDA) WHEN PREDICTOR 

IS ONE (P=1) 

. 

     Assuming the predictor is just one, that is, 1p  . Our 

focus is to estimate (z)kg  then plug it into equation (12) in 

order to estimate (z)kP . The goal is to classify a predictive 

measurement to the class for which of (z)kP is largest. To 

estimate (z)kg , assumptions about its form need to be made. 

Assuming (z)kg  is Gaussian of one-normal Gaussian 

dimensional; the Gaussian density takes the form    

       
2

(z )1
(z) exp

22

k

k

kk

g




 
  

 
                               (12) 

Where 
k  and 2

k  are the mean and variance parameters of 

the thK class. Assume further that 2 2 2

1 2 K     , that is 

the same-shared variance across all thK classes. Inserting 

equation (12) into equation (11) gives 

         

2

2

2

1

(z )1
exp

22
(z)

(z )1
exp

22

k
k

k K
k

i

i i

p











 
 
 


 
 
 



                    (13)                                  

    k  stands for the prior probability that a predictive 

measurement belongs to the thK class. The Bayes classifier is 

concern about assigning a predictive measurement Z z  to 

the class for which equation (13) has greatest magnitude. 

Taking the logarithm of equation (13) and rearranging the 

terms gives 

         

2

2 2
(z) . log( )

2

k k

k kz
 

 
 

                                    (14)       

is largest. If K = 2, then 
1 2  , then the Bayes classifier 

apportions a predictive measurement of first class if 

  2 2

1 2 1 22z         and to second class otherwise. The 

Bayes decision boundary is the quantity, 
1 2( ) (z)z  , this is 

tantamount to  

                                          

 

  

 

2 2
1 2 1 21 2 2 1

1 2 1 22 2 2
z

      

   

  
  

 
              (15)        

        At times, when we are sure of the assertion that “Z” is 

sampled from a Gaussian distribution within each thK class, 

the parameters
1, , k  , 

1, , k   and 2 still need to be 

estimated when applying the Bayes classifier. The Linear 

Discriminant Analysis (LDA) technique will correct the Linear 

Discriminant Analysis Bayes Classifier (LDABC) by inserting 

the estimates of
k , 

2  and 
k  into equation (16) and the 

estimates are       

         
:

1

i

k i

i y kk

z
n




                                                           (16) 
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      
22

1 :

1

i

K

ki

k i y k

z
n k

 
 

 

                                         (17) 

     “n” is the totality of trained predictive measurements; 

" "kn   is the totality of trained predictive measurements in the 

thK class. 
k is the mean of all trained predictive 

measurements of thK class; 2  is the weighted average of 

trained variances for each thK classes. The membership 

probabilities of 
1, , k   at sometimes known and can be used 

directly. In cases where the probabilities have any additional 

information, LDA can estimate 
k  using the apportion trained 

predictive measurements that belong to thK class, that is, 

           k
k

n
n

                                                                 (18) 

     For the LDA classifier, we insert estimates of equation (17) 

and (18) into equation (14) and allot predictive measurement 

Z=z to the class for which                                                     
2

2 2
(z) . log( )

2

k k
k kz

 
 

 
                                             (19) 

is largest quantity. The discriminant functions (z)k  in (19) 

are linear functions of “z”.  

VI. LINEAR DISCRIMINANT ANALYSIS (LDA) WHEN 

PREDICTOR IS GREATER THAN ONE (P=1) 

 

    Extending the LDA classifier to case of multiple predictors, 

that is, 1p  . By doing so, assuming  1 2, , , pZ Z Z Z is 

sampled from a multivariate normal distribution with a class-

specific multivariate mean vector and a common covariance 

matrix. The multivariate normal distribution makes it possible 

for each of the predictor “Z” with correlation between each 

pair to follow the defined one-dimensional Gaussian 

distribution specified in equation (12). 

For p-dimensional random variable of “Z” to follow a 

multivariate Gaussian distribution. It is denoted by 

 ,Z N   , such that ( )Z    is the mean vector of “Z” 

with p-components, ( )Cov Z    stands for the p p  

variance-covariance matrix of “Z”. The p-dimensional 

multivariate Gaussian density can be mathematically written 

as,  

                            

 

1

1

22

1 1
g(z) exp (z ) (z )

2
2

T

k kp
 



 
     

 

            (20)                               

      It implies that the LDA classifier for 1p   presumes 

predictive measurements in the thK class are sampled from a 

p-dimensional multivariate Gaussian density with  ,N a  , 

where k  is the class-specified mean vector and   is the 

p p  variance-covariance matrix of “Z” that is common to all 

thK classes. Putting the p-dimensional multivariate Gaussian 

density for the thK class, (z)kg , into equation (12) and after 

working-out the solution that the Bayes classifier presumes a 

predictive measurement Z=z to the thK class for which 

                                                  

1 11
(z) log

2

T T

k k k k kz                                        (21) 

is the largest quantity. The vector is the updated version of 

equation (14). The Bayes decision boundary is the quantity, 

( ) (z)k z   , this is tantamount to  

                                

1 1 1 11 1

2 2

T T T T

k k kz z                                   (22)                

For k  . It is to be noted that the quantity log k in equation 

(22) has vanished because each of the three classes has the 

same number of trained predictive measurements, that is 
k is 

the same in each class.   
 

VII. QUADRATIC DISCRIMINANT ANALYSIS (QDA)  

 

       LDA presumes that the p-dimensional multivariate 

Gaussian density with  ,N   , where 
k  is the class-

specified mean vector and   is the p p  variance-

covariance matrix of “Z” that is common to all thK classes 

predictive measurements within each class that are sampled 

from p-dimensional Gaussian density.  Quadratic Discriminant 

Analysis (QDA) presumes an alternative discriminant analysis 

approach via assuming that the predictive measurements from 

each class emanated from Normal distribution and putting it 

into the Bayes’ theorem of equation (11) in order to aid 

prediction. Unlike LDA, QDA presumes that each class 

component of “K” has its own variance-covariance matrix. In 

other words, it suggested that a predictive measurement from 

the thK class is of the form  ,k kZ N   , such that 
k  is 

the covariance matrix for the thK class.  Under this 

assumption, the Bayes classifier presumes a predictive 

measurement Z = z to the class for which 

                                

11 1
(z) (z ) (z ) log log

2 2

T

k k k k k k             

                                   

1 1 11 1 1
log log

2 2 2

T T T

k k k k k k k kz z z                  (23)       

is the largest quantity. QDA entangles putting the estimates of 

k , 
k  and k  into equation (23), and thereafter assign 

predictive measurement Z=z to the class to which this quantity 

is largest. Unlike equation (22), the magnitude “z” becomes 
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visible to be a quadratic function in equation (23). In fact, this 

where Quadratic Discriminant Analysis (QDA) extracts its 

name.  Does it meaningful whether or not it is possible to 

presume thK classes share a common variance-covariance 

vector? 

VIII. NAÏVE BAYES  

      In this section, we shall be using Bayes’ theorem of 

equation (11) to evolve the QDA and LDA classifiers. The 

motive here is to use Bayes’ theorem to popularize the Naïve 

Bayes classifier. From equation (11) of the Bayes’ theorem, 

the mathematical expression provides the reflection of the 

posterior probability  (z) |kP P Y k Z z    in quantity of 

1, , K   and 
1( ), , ( )Kg z g z . k  can be estimated via the 

proportion of trained predictive measurements that belong to 
thK class, for 1, ,Kk  . It can be impalpable in 

estimating
1( ), , ( )Kg z g z . The Naïve Bayes would tackle 

estimating of 
1( ), , ( )Kg z g z  from another angle. Instead of 

assuming that 
1( ), , ( )Kg z g z  belong to multivariate normal 

distribution, we just assume a single assumption of  

      

1 1 2 2( ) ( ) ( ) ( )k k k kp pg z g z g z g z          1, ,k K       (24)           

Where kjg  is the distribution function of the jth of the 

independent among the predictive measurements in the kth 

class. This is somehow refers to as independency assumption. 

This assumption is very cognate because it usually engaging 

both estimating the marginal distribution of each independent 

variable and their joint distribution for a p-dimensional density 

functions. Naïve Bayes is a good choice since a huge amount 

of data is always require when estimating joint distribution. 

However, the independency of Naïve Bayes might introduce 

some sort of biasedness, but noted for variance reduction. 

Establishing the Naïve Bayes assumption makes it realistic to 

insert equation (24) into equation (11) to obtain a posterior 

probability of: 

1 1 2 2

1 1 2 2

1

( ) ( ) ( )
( | )

( ) ( ) ( )

k k k kp p

K

p p

g z g z g z
P Y k Z z

g z g z g z   







   
  

   
                        

1, ,k K                                                                       (25) 

          To estimate the one-dimensional density function kpg  

using trained data of 1 , ,j npz z  , we can still have some 

alternatives:  

(i) In case jZ   is quantitative,  2| ,j jk jkZ Y k N   . 

In case it is presume that within each class, the 

thj  independent variables sample from a 

univariate Gaussian distribution. This might 

sound like QDA, but there is a cognate difference 

of independent variables assume to be 

independent, which tantamount to a 

supplementary assumption that the each Kth 

class-specific variance-covariance vector is 

diagonal.  

(ii) Another viable option is non-parametric estimation 

of kpg when  
jZ  is quantitative. This can be done 

via bins of histogram for predictive 

measurements for 
thj  independent variables 

within each class. ( )kp pg z can be estimated as a 

fraction of trained predictive measurements in 

the Kth class that falls into the same bin of 

histogram as pz . Similarly, Kernel Density 

Estimator (KDE) to estimate kpg ; KDE is an 

essential smoothed version of histogram via 

bandwidths.    

(iii) In case 
jZ is qualitative, a simply count of the 

proportion of trained predictive measurements 

for the thJ  independent variable corresponding 

to each class. For example, if  5,6,7pZ  , and 

200 predictive measurements are in the Kth class. 

Furthermore, if thJ  independent variable takes 

on values of 5, 6, and 7 in 12, 24, and 36 of those 

predictive measurements, then kpg can be 

estimated as,  

                                    

= 5 

( ) = 6 

= 7

0.025, if z

0.03, if z  

0.036, if z          

p

p pkp

p

g z







            (26)                                                   

The illustrated Naïve Bayes classifier is with P = 3 

independent variables and K = 2 classes. The first two 

independent variables are quantitative, while the third 

independent variable is qualitative with three levels. 

IX. COMPARISON OF CLASSIFICATION OF THE CLASSIFIERS’ 

METHODS  

 

         Performing an analytical comparison of logistic and 

multinomial regression; LDA, QDA and Naïve Bayes. 

Considering the approaches of these mentioned methods in a 

setting of K-classes and assigning a predictive measurement to 

that minimizes  |P Y k Z z  . Significantly, setting K as 
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baseline class and apportion a predictive measurement to the 

class that minimizes gives 

                                                 

( | Z )
log

( | Z )

P Y k z

P Y K z

  
 

  
1, ,k K

                                    
(27)                                                                               

         Specifying the form of equation (27) for each method of 

LDA, QDA, and Naïve Bayes will furnish us with a clear 

understanding of their differences and similarities. However, 

for LDA, the Bayes’ theorem of (11) coupled with the 

assumption that the independent variables within each class are 

sampled from a multivariate Gaussian density of equation (20) 

with thK -class-specific mean and shared variance-covariance 

vector as shown below:  

                                                 

(z)( | Z )
log log

( | Z ) (z)

k k

K K

gP Y k z

P Y K z g





   
   

    
                           (28)                                                                                                                                              

                                             

 

 

1

1

(z ) (z )
exp

2
log

(z ) (z )
exp

2

T

k k

k

T

K K

K

 


 






     
  

  
  
     
  
  
  

                        (29)                                                          

1 1(z ) (z ) (z ) (z )
log

2 2

T T

k k k K K

K

    



        
   

 
  (30)         

                                                 

1 1( ) ( ) ( )
log

2 2

T T

k K k K k k K

K

z      



       
   

 
  (31) 

                    
1

p

k kj j

j

c d z


                                                   (32)                                          

Where 11
log ( ) ( )

2

Tk

k k K k K

K

c


   


 
     

 
. kjd  is the 

thJ  factor of 1( )k K   .  

        In a similar vein like that of logistic regression, LDA 

presumes log-odds of the posterior probabilities to be linear in 

“z”. Similarly, to the calculations of equation (32), QDA 

becomes 

                                                     

1 1 1

( | Z )
log

( | Z )

p p p

k kj j kj j l

j j l

P Y k z
c d z e z z

P Y K z   

  
   

  
           (33)                                                          

where kc , kjd  and kjle  are functions of k , K , k , K , 

k and K . QDA presumes log-odds of the posterior 

probabilities to be quadratic in z. Lastly, examining equation 

(27) in Naïve Bayes setting; It is to be recollected that ( )kg z  

is modeled as a multiplication of p one-dimensional functions 

( )kj jg z  1, ,j p .  Henceforth, 

                                        

(z)( | Z )
log log

( | Z ) (z)

k k

K K

gP Y k z

P Y K z g





   
   

    
                            (34)                                                                                                                                                                

                                      
1

1

(z )

log

(z )

p

k kj j

j

p

K Kj j

j

g

g









 
 
 
 
 
 




                   (35)                                                                                              

                               
1

(z )
log log

(z )

p
kj jk

jK Kj j

g

g



 

  
      

   
              (36)                                           

                                        
1

(z )
p

k kj j

j

c h


                            (37)                                                      

log k

k

K

c




 
  

 
 and 

(z )
(z ) log

(z )

kj j

kj j

Kj j

g
h

g

 
  

 
 

. It is to be noted 

that equation (37) takes the form of a Generalized Additive 

Model (GAM). After proper scrutiny and investigation of 

equation (32), (33), and (37) payoff the following reflections 

about LDA, QDA, and Naïve Bayes: 

 

 QDA is tantamount to LDA provided 0kjle     

1, ,j p  and 1, ,Kk  . 

 LDA is a restrained bound of QDA version if and only 

if 
1 2 K     . 

 Classifiers with linear decision boundaries are special 

case of Naïve Bayes with ( )kj j kj jh z d z . This 

connote that LDA is a special case of Naïve Bayes.   

 If  2,kj jN    is the distribution of the one-

dimensional Gaussian distribution modeled via 

Naïve Bayes of ( )kj jg z , then ( )kj j kj jg z d z , such 

that 
 

2

kj Kj

kj

j

d
 




  . It make-up that Naïve Bayes 

is a special case of LDA with   restrained bound to 

a diagonal vector with thJ  diagonal element that 

equal to  
2

j . 

The classification of classifiers can be extended to K-

Nearest Neighbors (KNN) that is completely a non-parametric 

technique. 

X. RESULTS 

 

        The dataset used to validate comparison of the model is a 

chemical analysis of wines grown in a region in Italy that was 
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derived from three different cultivars (The three types of wines 

constitute the three different cultivars) obtained in 1991. 

Thirteen (13) distinct synthetics comprises of the chemical 

analysis: these are malic_acid, alcalinity of ash, alcohol, 

magnesium, total phenols, flavanoids etc. that contains 178 

occurrences. The whole thirteen (13) variables are regarded as 

attributes and all continuous. The three types of wines are 

classifier attribute with three identification (1-3). In this 

classification context, the classifier structures posed a well-

behaved good dataset of classifier.     
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Fig. 1 Pair Panel Plot for the Thirteen (13) distinct synthetics 

chemicals of the Wine. 

 

       Having known that the pair panel plot not only reveals the 

correlation coefficient between each pairwise combination of 

variables as well as a density plot for each individual variable. 

It also shows the histogram for each variable of concern. The 

classifier variable itself “Type” made of three classes “1, 2, 3” 

with the second type of the wine being the apex. It has a 

positive relationship with distinct synthetics of malic, 

alcalinity, magnesium, phenols, flavanoids, Proanthocyanins, 

and proline. Whereas it possessed a negative relationship with 

other distinct synthetics. It can be deduced that distinct 

synthetics of alcohol, malic, ash, alkalinity, magnesium, 

proanthocyanins, proline, and hue are somewhat perfectly 

approximately normal (Gaussian) around there means, while 

the likes of Dilution, Non-flavanoid, flavonoids, and phenols 

approximately normal (Gaussian) around there means, but in a 

multimodal manner.     
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Fig. 2 Histogram Plot of the three Classifier of the Wine Types 

 

         The first and third group/type of the wine are asymmetrically 

left-skewed distributed. Meaning that a natural limit prevents 

outcomes on one side and center. In other words, the distributions’ 

peak are centered-off towards limits and tail stretches away from 

them, literally saying that the “wine” cannot be more than 100 

percent pure, or one type. The second group/type of the wine 

possessed a distanced and semi-hidden plateau (multimodal) normal 

distribution processes that are rightly skewed because there are like 

three (semi hidden and clearly seen) peaks closed together. This 

justified the three-classifier possession of the wine datasets. 

 

 

 

 

 

 

 

 

 

Table 1.  Multinomial Logistic Regression 

 Intercept Alcohol               Malic   Ash Alcalinity   Magnesium Phenols Flavanoids Nonflavanoids Proanthocyanin

s 

2   848.475  

 (0.018) 

-50.420 

(0.194) 

-16.83 

(0.022) 

-376.293 

(0.067)   

30.780 

(0.603) 

 -0.319 

 (2.334) 

115.4110 

(0.078) 

-93.036  

 (0.150)      

358.949 

  (0.007)       

100.583 

(0.046) 

3 -149.965  

(0.013)  

61.762 

(0.167) 

14.006 

(0.042) 

-93.303 

(0.033)    

28.102 

(0.286) 

 -4.288 

 (1.377) 

267.941 

(0.021) 

-256.984 

  (0.008) 

-389.821 

  (0.008) 

151.492 

(0.012) 

  

  Color           Hue Dilution Proline Sum of 

Probabilities 

Mean of 

Probabilities 

-24.093 

(0.115) 

 442.306 

  (0.017) 

-26.299 

(0.087) 

-0.558 

(7.118) 

 

     178 

 

0.3333333 

37.772 

(0.073) 

 -220.33 

  (0.011) 

-166.23 

(0.027) 

-0.411 

(7.408) 

 

                                                                  Table 2.  Linear Discriminant Analysis (LDA) 

Group 

Means 

Alcohol               Malic   Ash Alcalinity   Magnesium Phenols Flavanoid

s 

Nonflavanoid

s 

Proanthocyanins 

1 13.745 2.011 2.456 17.037   106.3390 2.840   2.982 0.290 1.899 

2 12.279 1.933 2.245 20.238   94.549 2.259  2.081 0.364 1.630 

3 13.154 3.334 2.437  21.417    99.313 1.679 0.782 0.448 1.154 

 

 

Color Hue Dilution Proline Sum of 

Posterior 

Mean of 

Posterior 

Prior 

probabilities of 

groups: 

5.528 1.062 3.158 1115.712    178 0.335 0.332 

3.087 1.056 2.785 519.507 0.399 

7.396 0.683 1.684 629.896 0.270 

 

Table 3.  Coefficients of Linear Discriminants Analysis 

Covariates LD1 LD2 Proportion of 

trace  (LD1) 

Proportion of 

trace  (LD2) 

Alcohol -0.404 0.872       0.6875      0.3125 

Malic 0.165 0.305  
Ash -0.369 2.346  

Alcalinity 0.155 -0.146  
Magnesium -0.002 -0.0005  

Phenols 0.618 -0.032  
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Flavanoids -1.661 -0.492  
Nonflavanoids -1.496 -1.631  

Proanthocyanins 0.134 -0.307  
Color 0.355 0.253  
Hue -0.818 -1.516  

Dilution -1.158 0.051  
Proline -0.003 0.003  

 

Table 4.  Quadratic Discriminant Analysis (QDA) 

Group 

Means 

Alcohol               Malic   Ash Alcalinity   Magnesium Phenols Flavanoids Nonflavanoids Proanthocyanins 

1 13.745 2.011 2.456 17.037   106.3390 2.840   2.982 0.290 1.899 

2 12.279 1.933 2.245 20.238   94.549 2.259  2.081 0.364 1.630 

3 13.154 3.334 2.437  21.417    99.313 1.679 0.782 0.448 1.154 

  
Color Hue Dilution Proline Sum of 

Posterior 

Mean of 

Posterior 

Prior probabilities 

of groups: 

5.528 1.062 3.158 1115.712    178 0.335 0.332 

3.087 1.056 2.785 519.507 0.399 

7.396 0.683 1.684 629.896 0.270 

 

Table 5.  Naïve Bayes 

Conditional Probabilities: 

Var

. 

Alcohol  Malic           Ash      Alcalinity       Magnesium     Phenols    Flavanoids 

  Y[,1]       Y[,2]       Y[,1] Y[,2] Y[,1] Y[,2]  Y[,1] Y[,2] Y[,1] Y[,2] Y[,1] Y[,2] Y[,1] Y[,2] 

1 13.745 0.462 2.010 0.689 2.456 0.227 17.037 2.546 106.33 10.499 2.840 0.339 2.982 0.398 

2 12.279 0.538 1.932 1.016 2.245 0.316 20.238 3.350 94.549 16.754 2.259 0.545 2.081 0.706 

3 13.154 0.530 3.334 1.088 2.437 0.185 21.417 2.258 99.313 10.891 1.679 0.357 0.782 0.294 
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B     Discussion 

 

From table 1 for multinomial logistic regression analysis, the 

sum of probabilities was estimated to be 178 with it mean 

calculated to be 0.333. The problem here is that can sum of 

probability of a proper defined probability space be 1 ?. No, 

it makes the space void. In a similar manner, table 2 to table 4 

for Linear Discriminant Analysis (LDA) and Quadratic 

Discriminant Analysis (QDA) produced sum of posterior and 

mean of posterior of 178 and 0.335 respectively. Both the 

LDA and QDA produced similar prior probabilities of 0.332, 

0.399, and 0.270 for the three classifiers: type 1, type 2, and 

type 3 of the wine respectively. LDA and QDA produced the 

same proportion of trace for (LD1) & (QDA1) and (LD2) & 

(QDA2) to be 0.6875 and 0.3125 respectively. QDA and LDA 

models have a slightly higher precision of 0.335 compare to 

lower precision of 0.303 for multinomial logistic regression 

model. Overall, Naïve Bayes possessed improved and higher 

A-priori probabilities of 0.334, 0.404, and 0.287 for the three 

classifiers: type 1, type 2, and type 3 of the wine respectively.  

 

XI CONCLUSION 

Overall, this analysis indicates the performance of 

classification of classifiers of multinomial logistic regression 

analysis, Linear Discriminant Analysis (LDA), Quadratic 

Discriminant Analysis and Naïve Bayes models. In conclusion, 

the four mentioned comparison models appealed to the three 

classified classifier of the wine dataset with Naïve Bayes 

dictating the pace for the ideal prior probabilities needed. The 

classifier of classification can be extended to K-Nearest 

Neighbors (KNN) model such that a value for “K”, the number 

of nearest neighbors can be used as the classifier. 
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