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Abstract—Runoff stationary critical flow is investigated as a
stochastic process by means of two routing simulation models,
a stream confluence, which has beens interpreted as a Marcus-
Lushnikov coalescence process, and a channel splitting model,
which has ben interpreted as a Markov chain over a regular
tree. Despite of the expected similarity due to expection that they
should be seen as one the backward of the other, the initiation
and the stopping methods using in algorithms influence strongly
stream size distribution.

Index Terms—runoff, stochastic processes

I. INTRODUCTION

Runoff is a fundamental process in surface hydrology,
related to phenomena as erosion, landslides and flooding, all
issues of growing importance for civil risks and food security
in a climate-change scenario.

Runoff takes place at any rainfall event and its intensity and
duration are related to scale and period of runoff: in practice
it occurs when rainfall rate is greater than infiltration rate, and
when the process reach a certain scale it is the main driver of
hydrological network, both feeding and forming it. At basin
scale routing models are widely used to forecast how streams
collect water from its catchment area: in such approaches the
watershed is represented in terms of homogeneous surfaces
where runoff is interpreted by simple dynamics as the mean-
field Kinematic Wave one ([4],[1]).

Though the complexity of routing models justify such
lumped approach, physically-based models have been contin-
uously chased as an El-Dorado ([6]) because of the need to
describe the very nature of runoff process mat a field scale.

One of major problem in developing a physical model of
runoff stay in surface complexity, which is usually represented
in terms of roughness, a concept related to a number of
measurable variables (e.g. pocket density, average depth, ..)
with a strong spatial variability.

The present approach is aimed to identify which stochastic
processes are suitable to model runoff at such a scale, an issue
which is faced interfacing the phenomenological description to
stochastic language by means of simulation models.

Phenomenology

Runoff is a process occurring over a surface which normally
owns depressions (pockets) with a size ranging from the scale
of mm to that of dm.

During a rainfall randomly falling droplets are collected by
those depressions, and when rainfall intensity exceeds pocket
leakage (infiltration) a cascade begins 1.

Fig. 1. Sketch of pocket cascade (from [1])

As those depression have different height, capacity and
location, spilling occurs in a random direction feeding the
closest pocket. Streams merges and increase in size and sone
generate rills and channels 2..

Fig. 2. Divide of a surface forming a pocket cascade

In 2D view runoff field may be seen as made of pockets
whose centers are located randomly as nodes of a lattice.

Toy model #1

To simulate runoff a depression lattice can be easily gen-
erated by means of a random (uniform) distribution, while
Thiessen - Voronoi geometrical approach can be used to
generate a polygonal divide of the surface (see figure 3).
From the catchment area boundary poligons are conveniently
removed.

The generated coverage is related to a pocket size distribu-
tion reported in figure 4 (right side).

Such a coverage is used to produce a discharge network,
assigning each node (pocket) a downstream child on the base
of slope (giving the main flow direction), distance and angle.

Stream network generation procedure is based on two steps:
• for each node (pocket) identification of downward child

node is made whose multiplicity is increased.
• starting from nodes with multiplicity 0 (source pockets),

streams are drawn to child nodes whose resolved multi-
plicity is reduced while increasing the size of the stream
that will emerge from it;

• the last step is repeated for the nodes reaching a residual
multiplicity equal to 0, till zeroing the nodes.
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Fig. 3. 2D distribution of 500 pockets generated in Matlab with ran-
dom(’uniform’) function and their Thiessen-Voronoi spatialization

Fig. 4. Distribution of pocket size

Such an algorithm does not simulate true dynamics, as con-
fluence nodes stay in a dormant state till every uphill nodes
are waken up (residual multiplicity goes to 0).

So doing a routing network is generated corresponding to
stationary critical flow that is a full stream saturation under
a constant rainfall regime without considering surface floods
(stream merging) and erosion (hard surface assumption).
Under these hypothesys it is possible to identify two kind of
pockets, ’sources’ (tree leaves) which feed the network, and
’confluence nodes’ representing those pockets where streams
merge to one another 5.

Node multiplicity is shown in figure 6 where, apart a large
number of ’sources’a certain amount of nodes with more than
2 confluences are also present.

Figure 7 reports the distributions of stream size (flow).

Toy Model #2

Another way of generating a runoff routing can be easily
obtained as a binary branching scheme going back from the
outlet channel. Figure 8 has been obtained by successive
random bifurcations (split has been obtained using a uni-
form distribution), stopping the process when the branch size

Fig. 5. Criptical flow routing obtained from the divide in figure 3

Fig. 6. Confluence multiplicity of nodes in figure 3

reaches 1/1000 of that of main stream; branches total to around
4000.

Model #2 as much as Model #1 can be useful to develop
rainfall-runoff models at field scale to study the response to
roughness.

Both models support a delay which can be easily related
to stream size, though it doesn’t perform any leaf node
spatializatiom: to assign each graph leaf a pocket without
leaving empty spaces, additional rules should be added further
(e.g. as in basin-scale models, [5]).

II. COALESCENCE AND BRANCHING PROCESSES

The models used above make runoff similar to other phe-
nomena widely studied in the literature in terms of stochastic
processes, as coalescence of particles in dispersed media
(aerosols and hydrosols), formation of agglomeration of emul-
sion droplets (oil separation) or coagulation (before gelation),
solid state avalanche breakdown in electronics.

Marcus-Lushnikov model

Model#1 can be seen as a Marcus-Lushnikov (ML) coa-
lescence process, where a couple of particles (streams) with a
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Fig. 7. Distribution of log of stream size

Fig. 8. Bottom-up reconstruction of a runoff process; x-axis is an arbitrary
cohordinate systems used just for display purposes whereas on y-axis is the
number of splits

given mass (flow) coalesce (merge) to a new entity conserving
their mass:

(x) + (y)→ (x+ y)

It is a particular Markov chain process considering n(> 1)
finite mass particles of mass (x1, .., xn) ∈ (0,∞)n, with total
mass M(=

∑
i=1,n xi) .

Such a process has been formerly described from Lushnikov
([2] ) introducing the state of the system:

Q = n1, .., ng, ..

which is a mass distribution function where ng is the
number of particles of size g : each time a coalescence event
takes place, two bins decrease of one unit and one of them
increases of one unit

Q+ = n1, .., nl − 1, ..nm − 1, ..nl+m + 1, ..

therefore the mass distribution integral |Q| =
∑
ni is not

time-conservative, while the total mass M =
∑
yi · nidoes.

In the case of runoff, assuming that particles (source pock-
ets/streams) of the same size, namely n(x, 0) = N · δ(x0) ,
the process is made a discrete one, and all the downhill stream
sizes are multiple (g is multiplicity) of the source one (which
can be easily related to roughness).

Therefore the distribution transformation process: Q→ Q+

can be represented by the rate A(Q+, Q) :

A(Q+, Q) = Kl,m · nl(Q) · [nm(Q)− δ(l,m)]

where ng(Q) is the number of particles with size g in the
state Q, and Kl,m is the probability of coalescence of two
streams of size l and m respectively.

As model #1 is describing a steady state regime, Marcus-
Lushnikov process should be considered as a space process;
however as it is not possible to observe every particles
(streams) of the system simultaneously, we have to look at
the process in terms of strips of length δz where an injection
of ’new’ source streams occur and the total number of streams
is conserved:

Q → Q+ + {N − |Q+|, 0, .., 0}

where|Q| is the number of streams in the considered state.

Splitting model

Even if split process (also know as binary branching/Galton-
Watson p.) seems the better candidate to represent model #2,
it is also obvious that branching is not an option as split
probability refers to the partitioning of a particle of mass l:

(l)→ (x) + (l − x) ; 0 < x < l

Therefore partitioning occurs on a graph which in first
instance can be assumed to be a regular tree, and the process
is a Markov chain on a tree (see e.g. [3]) where, at each
branching, a new Markov chain is initiated. Therefore in a
backward runoff process it applies repetitively, starting from
the main channel, which after n steps reduces its size by:

rn = x1 · . . . · xi · y1 · . . . · yn−i : y = 1− x

In fact runoff Model #2 has some discrepancies with such
a split process:

• stream length is not taken into account so probability of
branching after a fixed roughness dependent time/space
interval is considered to be 1;

• at branching the partitioning probability density is ran-
dom (uniform);

• branch production is stopped as a roughness-dependent
size is reached, that is when L · rn < L0.

As a dead event takes place, the particle is no more split,
therefore the process stops. Distribution of stream size is
shown in the figure 9 where after applying a log transformation
to size, a gaussian-like behavior appear, which suggests an
interpretation in terms of diffusive models.
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Fig. 9.

III. CONCLUSIONS

The study analyzes the possibility to represent runoff in
terms of a couple of stochastic processes, the coalescence
(Marcus-Lushnikov) and the splitting one, revealing that the
former one could be used once introducing an injection of
particles to conserve their number. The process which can
be used to represent the inverse runoff model could be a
simple Markov chain over a regular tree, with a death term
to consider the reaching of a stream of its birth point. Even
if both routing models seem to be sound with the physical
interpretation, initiation and stopping methods used in routing
algorithms don’t allow them to produce the same distributions
of stream sizeo.
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