
Review of Cases ofIntegrability in Dynamics of
Lower- and Multidimensional Rigid Body in a

Nonconservative Field of Forces

Abstract—Study of the dynamics of a multidimensional solid
depends on the force-fiel structure. As reference results, we
consider the equations of motion of low-dimensional solids in
the fiel of a medium-drag force. Then it becomes possible to
generalize the dynamic part of equations to the case of the motion
of a solid, which is multidimensional in a similarly constructed
force field and to obtain the full list of transcendental firs
integrals. The obtained results are of importance in the sense
that there is a nonconservative moment in the system, whereas
it is the potential force fiel that was used previously.

Index Terms—Case of integrability, dynamic part of motion
equations, multidimensional rigid body.

I. I NTRODUCTION

THIS activity presents itself the review of either obtained
earlier or new cases of integrability in Dynamics of two-

dimensional, three-dimensional, and four-dimensional rigid
body being in a nonconservative field of forces. The studied
problems are described in terms of dynamic systems with so-
called variable dissipation with zero mean.

The problem of research of complete choice of transcenden-
tal first integrals of the systems with dissipation is rather actual
too, and majority of scientific activities was dedicated to it.
New class of dynamic systems having the periodic coordinate
is introduced in consideration. Due to the presence in such
systems the nontrivial groups of symmetries it was shown that
the considered systems possess the variable dissipation with
zero mean that means the dissipation in the system is equal to
zero for the period on available periodical coordinate, although
both the sop of energy and its dissipation can be present in the
different domains of the phase space of the system. On the base
of obtained material the dynamic systems arising in Dynamics
of a rigid body were analyzed. As the result the series of
the cases of complete integrability of the motion equations in
terms of transcendental functions and expressing through the
finite combination of elementary functions were discovered.
The certain generalizations on the conditions of integrability
of more general classes of nonconservative dynamic systems
(Dynamics of four-dimensional rigid body) were obtained.

II. PRELIMINARY

The activity presents the review of both earlier obtained
and also new cases of integrability in two-, three-, and four-
dimensional rigid body dynamics in a nonconservative force
field. The problems studied are described in terms of so-called
zero mean variable dissipation dynamic systems.

Therefore, we study nonconservative systems for which the
methods for studying, for example, Hamiltonian systems is
not applicable in general. Therefore, for such systems, it is
necessary, in some sense, to ”directly” integrate the main
equation of dynamics. We generalize old cases and also obtain
new cases of complete integrability in transcendental functions
in two-, three-, and four-dimensional rigid body dynamics in
a nonconservative force field.

Of course, in the general case, it is sufficiently difficult to
construct some theory of integrating nonconservative systems
(even of low dimension). But in a number of cases where the
systems considered have additional symmetries, we succeed in
finding first integrals through finite combinations of elemen-
tary functions [1].

We obtain a whole spectrum of complete integrability
cases for nonconservative dynamical systems having nontrivial
symmetries. Moreover, in almost all cases, each of the first in-
tegrals is expressed through a finite combination of elementary
functions, being one transcendental function of its variables.
In this case, the transcendence is understood in the complex
analysis sense, when after continuation of given functions to
the complex domain, they have essentially singular points.
The latter fact is stipulated by the existence of attracting
and repelling sets in the system (for example, attracting and
repelling foci).

We discover new integrable cases of motion of a rigid body,
including that in the classical problem of motion of a spherical
pendulum in an over-run medium flow.

In [1], [2], [3], [4] we study the general aspects of inte-
grability of so-called variable dissipation dynamic systems.
For the beginning we give the visual characteristic of those
systems. Therefore, in this case, we will speak of systems with
the variable dissipation, where the term ”variable” refers not
to the value of the dissipation coefficient, but to the possible
alternation of its sign (therefore, it is more reasonable to use
the term sign-alternating).

We introduce the class of autonomous dynamic systems hav-
ing one periodic phase coordinate, and therefore, possessing
the certain symmetries which are typical for the pendulum-like
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systems. Weshow that offered class of systems are embedded
to the class of zero mean variable dissipation systems by
natural way, i.e., on the average, for the period of the existing
periodic coordinate, the sop and diffusing to energy balance
to each other in certain sense. We offer the examples of
pendulum-like systems on lower-dimension manifolds from
dynamics of a rigid body in a nonconservative field of force
[1], [5].

In [1], [6] we study the certain general conditions of inte-
grability in elementary functions for the systems both on two-
dimensional planes and the tangent bundle of one-dimensional
sphere (i.e., two-dimensional cylinder), and two-dimensional
sphere (the four-dimensional manifold). Therefore, we offer
the interesting example of three-dimensional phase pattern of
pendulum-like system which describes the motion of spherical
pendulum, placed in an over-run medium flow [1], [5], [6].

Since we present the cases of complete integrability in
spatial rigid body dynamics of the motion in a nonconser-
vative field, we deal with three (at first thought) independent
properties:

i) the distinguished class of systems with the symmetries
above;

ii ) the fact that this class of systems consists of systems
with zero mean variable dissipation (in the having periodic
variable), which allows us to consider them as ”almost”
conservative systems;

iii ) in certain (although lower-dimensional) cases, these
systems have the complete tuple of first integrals, which are
transcendental in general (from the viewpoint of complex
analysis).

In [1] the obtained results are systematized on study of
the dynamic equations of the motion of symmetrical two-
dimensional (2D−) rigid body which residing in a certain
nonconservative field of the forces. Its type is unoriginal
from dynamics of the real rigid bodies interacting with a
resisting medium on the laws of a jet flow, under which the
nonconservative tracing force acts onto the body, and it either
forces the value of the velocity of a certain typical point of
the rigid body to remain as constant in all time of motion,
that means the presence in system of nonintegrable servo-
constraint, or forces the center of mass of the body to move
rectilinearly and uniformly in all time of motion, that means
the presence in system of nonconservative pair of the forces
(see also [6], [7]).

Therefore, in [1] the additional transcendental first integral
expressing through the finite combination of elementary func-
tions is found to having analytical nonintegrable constraint,
and in [8], [9], [10] the same was made to having analytical
first integral (the square of the center of mass) only.

New obtained results are systematized and given in invariant
form. Herewith, the additional dependence of the moment of
the nonconservative force on the angular velocity is intro-
duced. The given dependence can be wide-spread and on the
cases of the motions in the spaces of higher dimensions.

In [1], [11] the obtained results are systematized on study
of the dynamic equations of the motion of symmetrical three-
dimensional (3D−) rigid body which residing in a certain
nonconservative field of the forces. Its type is also unoriginal

from dynamics of the real rigid bodies interacting with a
resisting medium on the laws of a jet flow, under which the
nonconservative tracing force acts onto the body, and it either
forces the value of the velocity of a certain typical point of
the rigid body to remain as constant in all time of motion,
that means the presence in system of nonintegrable servo-
constraint, or forces the center of mass of the body to move
rectilinearly and uniformly in all time of motion, that means
the presence in system of nonconservative pair of the forces.

Therefore, in [10], [11], [12] three additional transcendental
first integrals expressing through the finite combination of
elementary functions are found to having analytical invariant
relations (nonintegrable constraint and the integral on the
equality to zero one of the component of angular velocity), and
in [11], [12], [13] the same was made to having analytical first
integrals (the square of the center of mass and the integral on
the equality to zero one of the component of angular velocity)
only.

In [1] we declare the general aspects of dynamics of multi-
dimensional rigid body, i.e., the notion of angular velocity
tensor, the joint dynamic equations of the motion on direct
productRn × so(n), the Euler and Rivals formulas in multi-
dimensional case.

The question on tensor of inertia of four-dimensional (4D−)
rigid body is considered. In this activity it is proposed to study
two possible cases logically on principal moments of inertia,
i.e., when there existstwo relations on the principal moments
of inertia:

(i) when there existthreeequal principal moments of inertia
(I2 = I3 = I4);

(ii) when there existtwo pairsof equal moments of inetria
(I1 = I2, I3 = I4).

In [12], [13], [14] the obtained results are systematized on
study of the dynamic equations of the motion of symmetrical
four-dimensional (4D−) rigid body which residing in a certain
nonconservative field of the forces for the case(i). Its type is
also unoriginal from dynamics of lower-dimensional real rigid
bodies interacting with a resisting medium on the laws of a
jet flow, under which the nonconservative tracing force acts
onto the body, and it either forces the value of the velocity of
a certain typical point of the rigid body to remain as constant
in all time of motion, that means the presence in system of
nonintegrable servo-constraint, or forces the center of mass of
the body to move rectilinearly and uniformly in all time of
motion, that means the presence in system of nonconservative
pair of the forces.

Therefore, in [13], [14], [15] four additional transcendental
first integrals expressing through the finite combination of
elementary functions are found to having four analytical
invariant relations (nonintegrable constraint and three integrals
on the equalities to zero some of the components of angular
velocity tensor), and in [14], [15], [16] the same was made to
having four analytical first integrals (the square of the center
of mass and three integrals on the equalities to zero some of
the components of angular velocity tensor) only.

The results are pertained to the case when all the interaction
of a medium with the body is concentrated on that part of
the body surface that has the form of three-dimensional disk,
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TABLE I
CLASSIFICATION OF THE CASES OF INTEGRABILITY FROM

TWO-DIMENSIONAL SYMMETRIC RIGID BODY DYNAMICS IN E2 TO

FOUR-DIMENSIONAL DYNAMICALLY SYMMETRIC RIGID BODY DYNAMICS

IN E4

Dimension ConstraintCondition

of a Rigid Body v ≡ const(β2 ≡ const) VC ≡ const

E2 h = 0 ⊕ h = 0 ⊕
h 6= 0 ⊕ h 6= 0 ⊕

E3 h = 0 ⊕ h = 0 ⊕
(I2 = I3) h 6= 0 ⊕ h 6= 0 ⊕

E4 h = 0 ⊕ h = 0 ⊕
(I2 = I3 = I4) h 6= 0 ⊕ h 6= 0 ⊕

E4 h = 0 ⊕ h = 0 ª
(I1 = I2, I3 = I4) h 6= 0 ⊕ h 6= 0 ª

herewith, the force interaction is concentrated in the direction
which is perpendicular to this disk. These results are system-
atized and given in invariant form. Herewith, the additional
dependence of the moment of the nonconservative force on
the angular velocity is introduced. The given dependence can
be wide-spread and on the cases of the motions in the spaces
of higher dimensions.

In this activity the obtained results are systematized on study
of the dynamic equations of the motion of symmetrical four-
dimensional (4D−) rigid body which residing in a certain
nonconservative field of the forces for the case(ii). Its type
is also unoriginal from dynamics of lower-dimensional real
rigid bodies interacting with a resisting medium on the laws
of a jet flow, under which the nonconservative tracing force
acts onto the body, and it forces both the value of the velocity
of a certain typical point of the rigid body and the certain
phase variable to remain as constant in all time, that means
the presence in system of nonintegrable servo-constraints.

Therefore, in this activity two additional transcendental and
three analytical first integrals expressing through the finite
combination of elementary functions are found to having four
analytical invariant relations (two nonintegrable constraints
and two integrals on the equalities to zero some of the
components of angular velocity tensor).

The results which are obtained now are pertained to the
case when all the interaction of a medium with the body is
concentrated on that part of the body surface that has the
form of two-dimensional disk, herewith, the force interaction is
concentrated in two-dimensional plane which is perpendicular
to this disk. These results are systematized and given in
invariant form. Herewith, the additional dependence of the
moment of the nonconservative force on the angular velocity
is introduced. The given dependence can be wide-spread and
on the cases of the motions in the spaces of higher dimensions.

And so, in [16], [17], [18] the cases of integrability in lower-
and multi-dimensional dynamics of a rigid body placed in a
nonconservative force field. To systemize we shall place all of
them to the following table.

The notificationsh = 0 (or h 6= 0) mean that the

dependence of the force field on the components of angular
velocity tensor is present (or is absent) in the system.

The sign⊕ means that the case is placed to this review.
Two signsª in the right below corner of the table mean

that these two cases are not placed to this review (indeed, this
activity is devoted to the caseI1 = I2, I3 = I4 only).

Nevertheless, the corresponding results have already ob-
tained for the caseI2 = . . . = In of symmetricn-dimensional
rigid body, and those results are not also placed to this review.

Many results of this work were regularly reported at nu-
merous workshops, including the workshop ”Actual Problems
of Geometry and Mechanics” named after professor V. V.
Trofimov led by D. V. Georgievskii and M. V. Shamolin.

III. C ASES OF INTEGRABILITY CORRESPONDING TO A

RIGID BODY MOTION IN FOUR-DIMENSIONAL SPACE

In this section the new results are systematized on study of
the equations of the motion of dynamically symmetrical four-
dimensional (4D−) rigid body which residing in a certain
nonconservative field of the forces in the case of special
dynamical symmetry. Its type is unoriginal from dynamics of
the real lower-dimensional rigid bodies of interacting with a
resisting medium on the laws of a jet flow, under which the
nonconservative tracing force acts onto the body and forces
both the value of the velocity of a certain typical point of the
rigid body and the certain phase variable to remain as constant
in all time, that means the presence in system of nonintegrable
servo-constraints.

Previously, in [1], the author showed the complete inte-
grability of the equations of body planeparallel motion in
a resisting medium under the conditions of streamline flow
around when the system of dynamical equations has a first
integral that is a transcendental (having essentially singular
points in the sense of the theory of functions of one complex
variable) function of quasi-velocities. At that time, it was
assumed that the interaction of the medium with the body
is concentrated on the part of the body surface that has the
form of a (one-dimensional) plate.

Later on, in [2], [5], [18], the plane problem was generalized
to the spatial (three-dimensional) case where the system of
dynamical equations has a complete tuple of transcendental
first integrals. It was assumed here that the whole interaction
of the medium and the body is concentrated on a part of the
body surface that has the form of a plane (two-dimensional)
disk.

In this section the results which are obtained now are
pertained to the case when all the interaction of a medium
with the body is concentrated on that part of the body surface
that has the form of two-dimensional disk, herewith, the force
interaction is concentrated in two-dimensional plane which is
perpendicular to this disk. These results are systematized and
given in invariant form. Herewith, the additional dependence
of the moment of the nonconservative force on the angular
velocity is introduced. The given dependence can be wide-
spread and on the cases of the motions in the spaces of higher
dimensions.
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IV. MORE GENERAL PROBLEM OF THE MOTION WITH THE

TRACING FORCE

Let consider the motion of a homogeneous dynami-
cally symmetric rigid body with ”the front end-wall” (two-
dimensional disk interacting with a medium which filling the
four-dimensional space) in the field of forceS of the resistance
under the conditions of quasistationarity.

Let (v, α, β2, β1) are the coordinates of the vector velocity
of a certain typical pointD of a rigid body (D is the center
of two-dimensional disk) such thatα is the angle between the
vectorvD and the planeDx1x2, β2 is the angle measured in
the planeDx1x2 up to the projection of the vectorvD on the
planeDx1x2, β1 is the angle mesured in the planeDx3x4 up
to the projection of the vectorvD on the planeDx3x4,

Ω =




0 −ω6 ω5 −ω3

ω6 0 −ω4 ω2

−ω5 ω4 0 −ω1

ω3 −ω2 ω1 0




is the angular velocity tensor of the body,Dx1x2x3x4 is the
coordinate system related to the body, herewith, the straight
line CD lies in the planeDx1x2 (C is the center of mass), and
the axesDx3, Dx4 lie in the disk plane,I1, I2 = I1, I3, I4 =
I3, m are the inertia–mass characteristics.

Let accept the following decompositions in the projections
on the axes of the coordinate systemDx1x2x3x4:

DC = {σ sin γ,−σ cos γ, 0, 0},
vD = {v cosα sin β2, v cos α cosβ2,

v sin α cos β1, v sin α sinβ1}. (1)

Herewith, in our case the decomposition will be also correct
for the function of a medium interaction on four-dimensional
body:

S = {S1, S2, 0, 0}, (2)

herewith

S1 = S sin γ, S2 = −S cos γ, γ = const, (3)

i.e. in this caseF = S, and the angleγ is measured in the
planeDx1x2.

Then those part of dynamic equations of the body motion
(including and in the case of Chaplygin analytical functions,
see below) which describes the center of mass motion and
corresponds to the spaceR4 under which the tangent forces
to three-dimensional disk are absent, has the form:

v̇ cosα sin β2 − α̇v sinα sin β2 + β̇2v cos α cosβ2−
−ω6v cos α cos β2 + ω5v sin α cos β1 − ω3v sinα sin β1−
−σ(ω2

6 + ω2
5 + ω2

3) sin γ − σ(ω4ω5 + ω2ω3) cos γ+

+σω̇6 cos γ =
S1

m
, (4)

v̇ cos α cosβ2 − α̇v sin α cosβ2 − β̇2v cos α sinβ2+

+ω6v cos α sin β2 − ω4v sin α cos β1 + ω2v sin α sin β1+

+σ(ω2
6 + ω2

4 + ω2
2) cos γ + σ(ω4ω5 + ω2ω3) sin γ+

+σω̇6 sin γ =
S2

m
, (5)

v̇ sin α cos β1 + α̇v cosα cos β1 − β̇1v sin α sin β1−
−ω5v cos α sin β2 + ω4v cos α cos β2 − ω1v sin α sin β1+

+σ(ω4ω6 − ω1ω3) sin γ − σ(ω5ω6 + ω1ω2) cos γ−
−σω̇5 sin γ − σω̇4 cos γ = 0, (6)

v̇ sin α sin β1 + α̇v cos α sin β1 + β̇1v sin α cos β1+

+ω3v cosα sin β2 − ω2v cosα cos β2 + ω1v sin α cos β1−
−σ(ω2ω6 + ω1ω5) sin γ + σ(ω3ω6 − ω1ω4) cos γ+

+σω̇3 sin γ + σω̇2 cos γ = 0, (7)

where
S = s(α)v2, σ = CD, v > 0. (8)

Later on, the auxiliary matrix for the calculation of the
moment of the resisting force has the form

(
0 0 x3N x4N

S1 S2 0 0

)
, (9)

then those part of the dynamic equations of the body motion
which describes the body motion around the center of mass,
and corresponds to the Lie algebra so(4), has the form:

(λ4 + λ3)ω̇1 + (λ3 − λ4)(ω3ω5 + ω2ω4) = 0, (10)

(λ2 + λ4)ω̇2 + (λ2 − λ4)(ω3ω6 − ω1ω4) =

= −x4N

(
α, β1, β2,

Ω
v

)
s(α)v2 cos γ, (11)

(λ4 + λ1)ω̇3 + (λ4 − λ1)(ω2ω6 + ω1ω5) =

= −x4N

(
α, β1, β2,

Ω
v

)
s(α)v2 sin γ, (12)

(λ3 + λ2)ω̇4 + (λ2 − λ3)(ω5ω6 + ω1ω2) =

= x3N

(
α, β1, β2,

Ω
v

)
s(α)v2 cos γ, (13)

(λ1 + λ3)ω̇5 + (λ3 − λ1)(ω4ω6 − ω1ω3) =

= x3N

(
α, β1, β2,

Ω
v

)
s(α)v2 sin γ, (14)

(λ1 + λ2)ω̇6 + (λ1 − λ2)(ω4ω5 + ω2ω3) = 0. (15)

Thus, the following direct product of four-dimensional
manifold on the Lie algebra so(4)is the phase space of the
tenth order system (4)–(7), (10)–(15):

R1 × S3 × so(4). (16)

We notice right now that the system (4)–(7), (10)–(15), by
virtue of the having dynamical symmetry

I1 = I2, I3 = I4, (17)

possesses the cyclic first integrals

ω1 ≡ ω0
1 = const, ω6 ≡ ω0

6 = const. (18)

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION 
DOI:  10.46300/9102.2022.16.8 Volume 16, 2022

E-ISSN: 1998-0159 45



Herewith, hereinafterwe shall consider the dynamics of the
system on zero level:

ω0
1 = ω0

6 = 0. (19)

And if there exists the more general problem of the body
motion with the certain tracing forceT, which acts on the
planeDx1x2 and providing the fulfillment of the following
equalities in all time of the motion

v ≡ const, β2 ≡ const, (20)

that in the system (4)–(7), (10)–(15) the values

T1 + S1, T2 + S2 (21)

will stand instead ofF1 andF2 accordingly.
As a result of corresponding value choiceT of the tracing

force it is possible to obtain formally the fulfillment of the
equalities (20) in all time of the motion. Really, if we express
formally the valueT by virtue of the system (4)–(7), (10)–(15)
we shall obtain forcosα 6= 0:

T1 = T1,v,β2(α, β1,Ω) =

= −mσ(ω2
5 + ω2

3) sin γ −mσ(ω4ω5 + ω2ω3) cos γ+

+mω5v sin α cosβ1 cos2 β2 −mω3v sin α sin β1 cos2 β2+

+mω4v sin α cosβ1 sin β2 cos β2−
−mω2v sin α sin β1 sin β2 cos β2 − s(α)v2×

×
[
sin γ − mσ

I1 + I3

sin α

cos α
sin β2 · Λv,β2

(
α, β1,

Ω
v

)]
, (22)

T2 = T2,v,β2(α, β1,Ω) =

= mσ(ω2
4 + ω2

2) cos γ + mσ(ω4ω5 + ω2ω3) sin γ−
−mω4v sinα cos β1 sin2 β2 + mω2v sin α sin β1 sin2 β2−

−mω5v sin α cosβ1 sin β2 cos β2+

+mω3v sin α sin β1 sin β2 cos β2 + s(α)v2×

×
[
cos γ − mσ

I1 + I3

sin α

cos α
cosβ2 · Λv,β2

(
α, β1,

Ω
v

)]
, (23)

where

Λv,β2

(
α, β1,

Ω
v

)
= x3N

(
α, β1, β2,

Ω
v

)
cosβ1+

+x4N

(
α, β1, β2,

Ω
v

)
sin β1. (24)

The conditions (18)–(20)are used at the obtaining of the
equalities (22) and (23).

It makes possible to look at this procedure from two posi-
tions. In first, the transformation of the system has occurred
at presence of the tracing (control) force in the system which
provides the consideration of interesting classes of the motion
(20). In second, it makes possible to look at this like the
procedure which allows to deflate the system. Really, the
system (4)–(7), (10)–(15) as a result of that action generates
an independent system of the sixth order of the following type:

α̇v cos α cos β1 − β̇1v sin α sin β1 − ω5v cos α sin β2+

+ω4v cos α cos β2 − σω̇5 sin γ − σω̇4 cos γ = 0, (25)

α̇v cos α sin β1 + β̇1v sin α cos β1 + ω3v cos α sin β2−
−ω2v cos α cos β2 + σω̇3 sin γ + σω̇2 cos γ = 0, (26)

(I1 + I3)ω̇2 = −x4N

(
α, β1, β2,

Ω
v

)
s(α)v2 cos γ, (27)

(I1 + I3)ω̇3 = −x4N

(
α, β1, β2,

Ω
v

)
s(α)v2 sin γ, (28)

(I1 + I3)ω̇4 = x3N

(
α, β1, β2,

Ω
v

)
s(α)v2 cos γ, (29)

(I1 + I3)ω̇5 = x3N

(
α, β1, β2,

Ω
v

)
s(α)v2 sin γ, (30)

in which the parametersv, β2 are added to the constant
parameters specified above.

A. Two systems of the discourses on integrability

Remark (on analytical firs integrals). Obviously that
the system (25)–(30) possesses two analytical first integrals
which are expressed in terms of the finite combination of the
elementary functions:

ω2 sin γ − ω3 cos γ = W ′
1 = const, (31)

ω4 sin γ − ω5 cos γ = W ′
2 = const. (32)

First of all this means that the system (25)–(30) can be reduced
to the fourth order system on its own four-dimensional phase
manifold.

Hereafter, it makes possible to develop by the following
ways under the study of the system (25)–(30) (i.e. to accept
the following systems of the discourses).
I. In first, it makes possible ”not to notice” the existence

in the system the first integrals of the forms (31), (32). Then
conducting the series of the equivalent transformations it can
possible try to reduce the investigated system (25)–(30) to the
equivalent system in which the reduction to the systems of
lower dimensionality will occur. Herewith, it is sufficient to
get the quantity of the independent first integrals smaller then
previous one on two units for the complete system integration,
by virtue of (31), (32).
II. In second, it makes possible to use the first integrals

(31), (32) expressing two interested phase variables from the
list ω2, ω3, ω4, ω5. Herewith, we shall get just the fourth order
system as the system which is the reduction of the system
(25)–(30) to the certain four-dimensional phase manifold.

In the beginning we shall choose the system of the dis-
coursesI.

Really, the system (25)–(30) is equivalent to

α̇v cos α− ω5v cos α cosβ1 sin β2 + ω4v cosα cos β1 cosβ2+

+ω3v cosα sin β1 sin β2 − ω2v cosα sin β1 cos β2−
σω̇5 sin γ cos β1 − σω̇4 cos γ cos β1+

+σω̇3 sin γ sin β1 + σω̇2 cos γ sinβ1 = 0, (33)

β̇1v sin α + ω3v cosα cosβ1 sinβ2−ω2v cos α cosβ1 cos β2+
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+ω5v cosα sin β1 sin β2 − ω4v cosα sin β1 cosβ2+

+σω̇3 sin γ cos β1 + σω̇2 cos γ cos β1+

+σω̇5 sin γ sin β1 + σω̇4 cos γ sin β1 = 0, (34)

ω̇2 = − v2

I1 + I3
x4N

(
α, β1, β2,

Ω
v

)
s(α) cos γ, (35)

ω̇3 = − v2

I1 + I3
x4N

(
α, β1, β2,

Ω
v

)
s(α) sin γ, (36)

ω̇4 =
v2

I1 + I3
x3N

(
α, β1, β2,

Ω
v

)
s(α) cos γ, (37)

ω̇5 =
v2

I1 + I3
x3N

(
α, β1, β2,

Ω
v

)
s(α) sin γ, (38)

Let introducenew quasivelocities in the system. We shall
transform the valuesω2, ω3, ω4, ω5 by means of the composi-
tion of the following rotations for this:

(
z1

−z2

)
= T∗(−β1)

(
ω3

ω5

)
,

(
z3

−z4

)
= T∗(−β1)

(
ω2

ω4

)
, (39)

where

T∗(β1) =

(
cos β1 − sin β1

sin β1 cos β1

)
, (40)

and also (
w1

w2

)
= T∗(β2)

(
z3

z1

)
,

(
w3

w4

)
= T∗(−β2)

( −z4

z2

)
. (41)

Thus, the following relations are correct:

z1 = ω3 cos β1 + ω5 sin β1,

z2 = ω3 sin β1 − ω5 cos β1,

z3 = ω2 cos β1 + ω4 sin β1,

z4 = ω2 sin β1 − ω4 cos β1,

w1 = −z1 sin β2 + z3 cos β2,

w2 = z3 sin β2 + z1 cosβ2,

w3 = z2 sin β2 − z4 cosβ2,

w4 = z4 sin β2 + z2 cosβ2.

(42)

As is seen from (33)–(38), on the manifold

O2 =
{

(α, β1, ω2, ω3, ω4, ω5) ∈ R6 : α =
π

2
k, k ∈ Z

}

(43)
it is impossible to resolve the system uniquely relatively
to α̇, β̇1. Thus, the violation of the uniqueness theorem is
happened on the manifold (43) formally. Moreover, in first,
the indefiniteness is happened for even or oddk by the reason
of degeneration of the coordinates(v, α, β1, β2) which are
parameterized the three-dimensional sphere (but are not the
classical spherical coordinates), and, in second, it is happened

the evident violation of the uniquiness theorem for oddk
because of the first equation of (33) degenerates for this case.

Really, Jacobian of the transformationx1, x2, x3, x4 −→
v, α, β1, β2

x1 = v cos α sin β2,

x2 = v cos α cos β2,

x3 = v sin α cosβ1,

x4 = v sin α sin β1

(44)

is equal to
v3 cos α sin α,

in what it differs from Jacobian of the transformation under the
transition to the generalized spherical coordinatesv, α, β1, β2,
which, in turn, is equal to

v3 sin α sin β1.

It follows that the system (33)–(38) outside of and only
outside of the manifold (43) is equivalent to the system

α̇ = −w3 +
σv

I1 + I3

s(α)
cos α

· Λv,β2

(
α, β1,

Ω
v

)
, (45)

ż4 = − v2

I1 + I3
s(α) cos γ · Λv,β2

(
α, β1,

Ω
v

)
+

+z3

[
w1

cosα

sin α
− σv

I1 + I3

s(α)
sin α

·Πv,β2

(
α, β1,

Ω
v

)]
, (46)

ż3 =
v2

I1 + I3
s(α) cos γ ·Πv,β2

(
α, β1,

Ω
v

)
−

−z4

[
w1

cosα

sin α
− σv

I1 + I3

s(α)
sin α

·Πv,β2

(
α, β1,

Ω
v

)]
, (47)

ż2 = − v2

I1 + I3
s(α) sin γ · Λv,β2

(
α, β1,

Ω
v

)
+

+z1

[
w1

cosα

sin α
− σv

I1 + I3

s(α)
sin α

·Πv,β2

(
α, β1,

Ω
v

)]
, (48)

ż1 =
v2

I1 + I3
s(α) sin γ ·Πv,β2

(
α, β1,

Ω
v

)
−

−z2

[
w1

cosα

sin α
− σv

I1 + I3

s(α)
sin α

·Πv,β2

(
α, β1,

Ω
v

)]
, (49)

β̇1 = w1
cos α

sin α
− σv

I1 + I3

s(α)
sin α

·Πv,β2

(
α, β1,

Ω
v

)
, (50)

or finally

α̇ = −w3 +
σv

I1 + I3

s(α)
cos α

· Λv,β2

(
α, β1,

Ω
v

)
, (51)

ẇ4 = − v2

I1 + I3
s(α) sin(β2 + γ) · Λv,β2

(
α, β1,

Ω
v

)
+

+w2

[
w1

cosα

sin α
− σv

I1 + I3

s(α)
sin α

·Πv,β2

(
α, β1,

Ω
v

)]
, (52)

ẇ3 =
v2

I1 + I3
s(α) cos(β2 + γ) · Λv,β2

(
α, β1,

Ω
v

)
−

−w1

[
w1

cosα

sin α
− σv

I1 + I3

s(α)
sin α

·Πv,β2

(
α, β1,

Ω
v

)]
, (53)
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ẇ2 =
v2

I1 + I3
s(α) sin(β2 + γ) ·Πv,β2

(
α, β1,

Ω
v

)
−

−w4

[
w1

cosα

sin α
− σv

I1 + I3

s(α)
sin α

·Πv,β2

(
α, β1,

Ω
v

)]
, (54)

ẇ1 =
v2

I1 + I3
s(α) cos(β2 + γ) ·Πv,β2

(
α, β1,

Ω
v

)
+

+w3

[
w1

cosα

sin α
− σv

I1 + I3

s(α)
sin α

·Πv,β2

(
α, β1,

Ω
v

)]
, (55)

β̇1 = w1
cos α

sin α
− σv

I1 + I3

s(α)
sin α

·Πv,β2

(
α, β1,

Ω
v

)
, (56)

where

Πv,β2

(
α, β1,

Ω
v

)
= −x4N

(
α, β1,

Ω
v

)
cosβ1+

+x3N

(
α, β1,

Ω
v

)
sin β1, (57)

andthe functionΛv,β2 (α, β1,Ω/v) is represented in the form
(24).

Hereafter, the dependence on the groups of the vari-
ables (α, β1, β2, Ω/v) is understood like the compli-
cated dependence on(α, β1, β2, z1/v, z2/v, z3/v, z4/v) (or
(α, β1, β2, w1/v, w2/v, w3/v, w4/v)) by virtue of (42).

The violation of the uniqueness theorem is happened for the
system (33)–(38) on the manifold (43) for oddk in following
sense: the regular phase trajectory of the system (33)–(38)
passes through nearly any point from the manifold (43) for odd
k intersecting the manifold (43) under right angle, and also
there exist the phase trajectory which coincides completely
with the specified point in all moments of time. But those are
the different trajectories physically since the different values
of the tracing force correspond them. Let show this.

As it is shown above, it is necessary to choose the values
T1 andT2 for cosα 6= 0 in the form of (22) and (23) to fulfill
the constraints (20).

Let

lim
α→π/2

s(α)
cos α

Λv,β2

(
α, β1,

Ω
v

)
= L

(
β1, β2,

Ω
v

)
. (58)

Let note that|L| < +∞ iff, when

lim
α→π/2

∣∣∣∣
∂

∂α

(
Λv,β2

(
α, β1,

Ω
v

)
s(α)

)∣∣∣∣ < +∞. (59)

The necessary values of the tracing force forα = π/2
should be found from the equalities

T1 = T1,v,β2

(π

2
, β1, Ω

)
=

= −mσ(ω2
5 + ω2

3) sin γ −mσ(ω4ω5 + ω2ω3) cos γ+

+mω5v cosβ1 cos2 β2 −mω3v sin β1 cos2 β2+

+mω4v cos β1 sin β2 cos β2 −mω2v sin β1 sin β2 cosβ2+

+v2 mσ

I1 + I3
sin β2 · L, (60)

T2 = T2,v,β2

(π

2
, β1, Ω

)
=

= mσ(ω2
4 + ω2

2) cos γ + mσ(ω4ω5 + ω2ω3) sin γ−
−mω4v cos β1 sin2 β2 + mω2v sin β1 sin2 β2−

−mω5v cos β1 sin β2 cos β2 + mω3v sin β1 sin β2 cosβ2−
−v2 mσ

I1 + I3
cos β2 · L, (61)

wherethe valuesof ω2, ω3, ω4, ω5 are arbitrary.
On the other hand, if we make the rotation around a certain

point W by means of the tracing force it will be necessary to
choose the projections of the tracing force in the form of

T = T1

(π

2
, β1, β2, Ω

)
=

mv2

R01
, (62)

T = T2

(π

2
, β1, β2, Ω

)
=

mv2

R02
, (63)

whereR01, R02 are the projectionsof the cutCW onto the
corresponding axes of the coordinates.

The equalities (22), (23) and (62) (63) define, generally
speaking, the different values of the tracing forceT for almost
all the points of the manifold (43), and that is proved the
suitable remark.

V. CASE OF THE ABSENCE OF THE DEPENDENCE OF THE

MOMENT OF THE NONCONSERVATIVE FORCES ON THE

ANGULAR VELOCITY

A. Reduced system

Similarly to the choice of the Chaplygin analytical func-
tions, we shall accept the dynamic functionss, x3N andx4N

as the following form:

s(α) = B cos α, A, B > 0, v 6= 0,

x3N

(
α, β1, β2,

Ω
v

)
= x3N0(α, β1) = A sin α cosβ1, (64)

x4N

(
α, β1, β2,

Ω
v

)
= x4N0(α, β1) = A sin α sin β1,

which convinces us that the dependence of the moment of
the nonconservative forces on the angular velocity is absent
in considered system (and there exist the dependences on the
anglesα, β1, β2 only).

Herewith, the functionsΛv,β2 , Πv,β2 , appearing in the sys-
tem (51)–(56), have the following forms:

Λv,β2

(
α, β1,

Ω
v

)
= A sin α, Πv,β2

(
α, β1,

Ω
v

)
≡ 0. (65)

Thenthe dynamicpart of the motion equations (the system
(51)–(56)) will have the form as the following analytical
system by means of the nonintegrable constraints (20) outside
of and only outside of the manifold (43)

α̇ = −w3 +
σABv

I1 + I3
sin α, (66)

ẇ4 = − ABv2

I1 + I3
sin(β2 + γ) sin α cosα + w1w2

cosα

sin α
, (67)

ẇ3 =
ABv2

I1 + I3
cos(β2 + γ) sin α cos α− w2

1

cosα

sin α
, (68)
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ẇ2 = −w1w4
cosα

sin α
, (69)

ẇ1 = w1w3
cos α

sinα
, (70)

β̇1 = w1
cosα

sin α
, (71)

If we introduce thedimensionless variables, parameters and
differentiability as follows:

wk 7→ n0vwk, k = 1, 2, 3, 4, n2
0 =

AB

I1 + I3
,

b = σn0, < · >= n0v <′>, (72)

we shall reduce the system (66)–(71) to the form

α′ = −w3 + b sinα, (73)

w′4 = − sin(β2 + γ) sin α cosα + w1w2
cosα

sin α
, (74)

w′3 = cos(β2 + γ) sin α cosα− w2
1

cosα

sin α
, (75)

w′2 = −w1w4
cosα

sin α
, (76)

w′1 = w1w3
cos α

sinα
, (77)

β′1 = w1
cosα

sin α
, (78)

As is seen,the independent fifth order system (73)–(77) on
its own five-dimensional manifold was formed in the sixth
order system (73)–(78) which can be considered on its own
six-dimensional manifold

TS2 ×R2 (79)

— the direct product of the tangent stratificationTS2 of two-
dimensional sphereS2 on two-dimensional plane.

Furthermore, the independent third order subsystem

α′ = −w3 + b sinα, (80)

w′3 = cos(β2 + γ) sin α cosα− w2
1

cosα

sin α
, (81)

w′1 = w1w3
cos α

sinα
, (82)

was formedfrom the sixth order system (73)–(78), and also
(while dependent) second order system

w′4 = − sin(β2 + γ) sin α cosα + w1w2
cosα

sin α
, (83)

w′2 = −w1w4
cosα

sin α
, (84)

and the equation
β′1 = w1

cosα

sin α
(85)

canbe chosen.
In general,for the complete integrability of the system (73)–

(78) it is sufficient to know five independent first integrals.
However, after the partition of the system on three parts (the
system (80)–(82), the system (83), (84) and the equation (85))
for the complete integrability it is sufficient to know two
independent first integrals of the system (80)–(82), one — of
the system (83), (84) (after the reduction of the latter system to

the independent subsystem) and one more first integral which
”joining” the equation (85).

Immediately we shall notice that the latter discourses are
typical for the choice of the system of discoursesI (see
above). Really, while we ”do not notice” the existence of
two analytical first integrals (31), (32). Therefore, when we
get two independent first integrals of the independent third
order system (80)–(82), and also the first integral ”joining”
the equation (85), we shall have the complete tuple of the
independent first integrals of the fourth order system (80)–(82),
(85). The obtained assigned complete tuple (three integrals)
and together with the analytical first integrals (31), (32) forms
the complete tuple of five first integrals of the sixth order
system (80)–(85).

Hereafter, in particular, it will is seen that the composition
of the analytical first integrals (31), (32) gives the first integral
of the (potentially separated) system (83), (84).

B. Complete list of invariant relations

At the beginning we compare the third order system (80)–
(82) to the nonautonomous second order system

dw3

dα
=

cos(β2 + γ) sin α cosα− w2
1 cos α/ sin α

−w3 + b sinα
,

dw1

dα
=

w1w3 cos α/ sin α

−w3 + b sin α
.

(86)

Let rewrite the system (86) on algebraic form using the
substitutionτ = sinα

dw3

dτ
=

cos(β2 + γ)τ − w2
1/τ

−w3 + bτ
,

dw1

dτ
=

w1w3/τ

−w3 + bτ
.

(87)

Later on, if we introduce the uniform variables by the
formulas

w1 = u1τ, w3 = u2τ, (88)

we shall reduce the system (87) to the following form:

τ
du2

dτ
+ u2 =

cos(β2 + γ)− u2
1

−u2 + b
,

τ
du1

dτ
+ u1 =

u1u2

−u2 + b
,

(89)

that is equivalent to

τ
du2

dτ
=

cos(β2 + γ)− u2
1 + u2

2 − bu2

−u2 + b
,

τ
du1

dτ
=

2u1u2 − bu1

−u2 + b
.

(90)

Let compare thesecondorder system (90) to the nonau-
tonomous first order equation

du2

du1
=

cos(β2 + γ)− u2
1 + u2

2 − bu2

2u1u2 − bu1
, (91)

which is reduceduncomplicatedto the complete differential:

d

(
u2

2 + u2
1 − bu2 + cos(β2 + γ)

u1

)
= 0. (92)
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And so, theequation(91) has the following first integral:

u2
2 + u2

1 − bu2 + cos(β2 + γ)
u1

= C1 = const, (93)

which in formervariables is looked like

w2
3 + w2

1 − bw3 sin α + cos(β2 + γ) sin2 α

w1 sin α
= C1 = const.

(94)
Remark 8.1. Let considerthe system (80)–(82) with zero

mean variable dissipation which becomes the conservative for
b = 0:

α′ = −w3,

w′3 = cos(β2 + γ) sin α cosα− w2
1

cosα

sin α
,

w′1 = w1w3
cosα

sin α
.

(95)

It has two the analytical first integrals of the forms

w2
3 + w2

1 + cos(β2 + γ) sin2 α = C∗1 = const, (96)

w1 sin α = C∗2 = const. (97)

It is obviously that the ratio of two the first integrals (96), (97)
is also the first integral of the system (95). But forb 6= 0 each
of functions

w2
3 + w2

1 − bw3 sinα + cos(β2 + γ) sin2 α (98)

and (97) are not the first integrals of the system (80)–(82)
separately. However, the ratio of the functions (98), (97) is
the first integral of the system (80)–(82) for anyb.

Later on, let find the evident form of the additional first
integral of the third order system (80)–(82). At the beginning
for this we shall transform the invariant relation (93) foru1 6=
0 as follows:
(

u2 − b

2

)2

+
(

u1 − C1

2

)2

=
b2 + C2

1

4
− cos(β2 +γ). (99)

As is seen,theparameters of given invariant relation should
satisfy the condition

b2 + C2
1 − 4 cos(β2 + γ) ≥ 0, (100)

and the phase space of the system (80)–(82) is stratified on
the family of the surfaces which is assigned by the equality
(99).

Thus, by virtue of the relation (93) the first equation of the
system (90) has the form

τ
du2

dτ
=

2(cos(β2 + γ)− bu2 + u2
2)− C1U1(C1, u2)

−u2 + b
,

(101)
where

U1(C1, u2) =
1
2
{C1 ±

√
C2

1 − 4(u2
2 − bu2 + cos(β2 + γ))},

(102)
herewith, the constant of the integrationC1 is chosen from the
condition (100).

Therefore, the quadrature for the search of the additional
first integral of the system (80)–(82) has the form (q1 =
cos(β2 + γ)− bu2 + u2

2)
∫

dτ

τ
=

=
∫

(b− u2)du2

2q1 − C1{C1 ±
√

C2
1 − 4q1}/2

. (103)

The left-hand side(accurateto the additive constant), obvi-
ously, is equal to

ln | sin α|. (104)

If

u2 − b

2
= p1, b2

1 = b2 + C2
1 − 4 cos(β2 + γ), (105)

then the right-hand side of the equality (103) has the form

−1
4

∫
d(b2

1 − 4p2
1)

(b2
1 − 4p2

1)± C1

√
b2
1 − 4p2

1

−

−b

∫
dp1

(b2
1 − 4p2

1)± C1

√
b2
1 − 4p2

1

=

= −1
2

ln

∣∣∣∣∣

√
b2
1 − 4p2

1

C1
± 1

∣∣∣∣∣±
b

2
I1, (106)

where

I1 =
∫

dp3√
b2
1 − p2

3(p3 ± C1)
, p3 =

√
b2
1 − 4p2

1. (107)

Threecases arepossiblefor the calculation of the integral
(107).
I. b > 2.

I1 = − 1
2
√

b2 − 4
ln

∣∣∣∣∣

√
b2 − 4 +

√
b2
1 − p2

3

p3 ± C1
± C1√

b2 − 4

∣∣∣∣∣ +

+
1

2
√

b2 − 4
ln

∣∣∣∣∣

√
b2 − 4−

√
b2
1 − p2

3

p3 ± C1
∓ C1√

b2 − 4

∣∣∣∣∣ + const.

(108)
II. b < 2.

I1 =
1√

4− b2
arcsin

±C1p3 + b2
1

b1(p3 ± C1)
+ const. (109)

III. b = 2.

I1 = ∓
√

b2
1 − p2

3

C1(p3 ± C1)
+ const. (110)

Whenwe returnto the variable

p1 =
w3

sin α
− b

2
, (111)

we shall have the final form for the valueI1:
I. b > 2.

I1 = − 1
2
√

b2 − 4
ln

∣∣∣∣∣

√
b2 − 4± 2p1√
b2
1 − 4p2

1 ± C1

± C1√
b2 − 4

∣∣∣∣∣ +

+
1

2
√

b2 − 4
ln

∣∣∣∣∣

√
b2 − 4∓ 2p1√
b2
1 − 4p2

1 ± C1

∓ C1√
b2 − 4

∣∣∣∣∣+const. (112)

II. b < 2.

I1 =
1√

4− b2
arcsin

±C1

√
b2
1 − 4p2

1 + b2
1

b1(
√

b2
1 − 4p2

1 ± C1)
+ const. (113)

III. b = 2.

I1 = ∓ 2p1

C1(
√

b2
1 − 4p2

1 ± C1)
+ const. (114)
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So, the additionalfirst integral was found right before for
the third order system (80)–(82) i.e. it was presented the com-
plete tuple of the first integrals which are the transcendental
functions of its own phase variables.
Remark 8.2. It is necessary to substitute formally the

left-hand side of the first integral (93) instead ofC1 in the
expression of the found first integral.

Then the obtained additional first integral has the following
structural form (which is similar to the transcendental first
integral from the planeparallel dynamics):

ln | sin α|+ G2

(
sin α,

w3

sin α
,

w1

sinα

)
= C2 = const. (115)

Thus, there arealready found two the independent first
integrals for the integration of the sixth order system (80)–
(85). And now, under the acceptance of the discourses type
systemI (see above, when as we were ”do not notice” the
existence of two analytical first integrals (31), (32)), and for
its complete integrability it is sufficient to find one first integral
for (separated potentially) system (83), (84), and also the
additional first integral which ”connects” the equation (85).

After the change of the variables

w∗ = w3 sin(γ + β2) + w4 cos(γ + β2),
w∗∗ = w1 sin(γ + β2)− w2 cos(γ + β2)

(116)

the system (83), (84) can be reduced to the form

dw∗
dβ1

= −w∗∗,

dw∗∗
dβ1

= w∗,
(117)

which expectsthe existence of the analytical first integral:

w2
∗ + w2

∗∗ = C3 = const. (118)

Let ask the question: how is related the obtained right now
first integral (118) with the analytical first integrals of the
forms (31), (32)?

Really, two discourses types (Iand II, see above) corre-
spond to two following alternatives. For the complete integra-
tion of the sixth order system (25)–(30):

1) Either we find five the independent first integrals of the
sixth order system (25)–(30);

2) Or we transform the sixth order system (25)–(30) such
as there are stand out the independent subsystems else more
low order.

So, for instance, since after observation of such coordinates
asw∗, w∗∗ the stratification of the system vector field is occur
such as the independent second order subsystem is formed
(117), it needs to find four the independent first integrals
instead of five ones (three — for the integration of the fourth
order system (80)–(82), (85) and one — for the integration of
the separated second order system (117)).

And now, finally, let rewrite the forms of the analytical first
integrals (31), (32) in new variables as follows:

w∗∗ cos β1 − w∗ sin β1 = W ′′
1 = const, (119)

w∗∗ sin β1 + w∗ cosβ1 = W ′′
2 = const. (120)

Obviously, that the analytical first integrals (119), (120) in-
volve the founded analytical first integral (118) (it is sufficient
for this to add the squares of the left-hand side of the equalities
(119), (120)).

Later on, finally, for the integration of the fourth order
system (80)–(82), (85) two independent the first integrals have
already founded. And for the complete its integrability it is
sufficient to find one more (additional) the first integral which
”joining” the equation (85).

Since

du1

dτ
=

u1(2u2 − b)
(b− u2)τ

,
dβ1

dτ
=

u1

(b− u2)τ
, (121)

then
du1

dβ1
= 2u2 − b. (122)

Obviously, for u1 6= 0 the equality

u2 =
1
2


b±

√
b2
1 − 4

(
u1 − C1

2

)2

 ,

b2
1 = b2 + C2

1 − 4 cos(β2 + γ), (123)

is fulfilled, then the integration of the following quadrature:

β1 + const= ±
∫

du1√
b2
1 − 4

(
u1 − C1

2

)2
(124)

will bring to the invariant relation

2(β1 + C4) = ± arcsin
2u1 − C1√

b2 + C2
1 − 4 cos(β2 + γ)

, (125)

C4 = const.

In other words, the equation

sin[2(β1 + C4)] = ± 2u1 − C1√
b2 + C2

1 − 4 cos(β2 + γ)
(126)

is fulfilled, or, under the transition to the old variables

sin[2(β1+C4)] = ± 2w1 − C1 sinα√
b2 + C2

1 − 4 cos(β2 + γ) sin α
. (127)

In principle, it makes possible to stop on the latter equality
to achieve the additional invariant relation ”connecting” the
equation (85), if we add to this equality that it is necessary to
substitute formally the left-hand side of the first integral (93)
instead ofC1 in the latter expression.

But we shall make the certain transformations which reduce
to the obtaining of the following evident form of the additional
first integral (herewith, the equality (93) is used):

tg2[2(β1 + C4)] =
(u2

1 − u2
2 + bu2 − cos(β2 + γ))2

u2
1(4u2

2 − 4bu2 + b2)
. (128)

Returningto the oldcoordinates, we shall obtain the addi-
tional invariant relation as the form

tg2[2(β1 + C4)] =

=
(w2

1 − w2
3 + bw3 sin α− cos(β2 + γ) sin2 α)2

w2
1(4w2

3 − 4bw3 sin α + b2 sin2 α)
, (129)
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or finally

−β1 ± 1
2

arctg
w2

1 − w2
3 + bw3 sin α− cos(β2 + γ) sin2 α

w1(2w3 − b sin α)
=

(130)

= C4 = const.

And so, thesystemof dynamic equations (4)–(7), (10)–
(15) under the condition (64) has eight invariant relations
in considered case: there exist the analytical nonintegrable
constraints (20), the cyclic first integrals (18), (19), the first
integral (94) and also there exists the first integral expressed by
the relations (108)–(115) which is the transcendental function
of its phase variables (in sense of complex analysis also) and
expresses in terms of finite combination of the elementary
functions, and finally the transcendent first integral (130)
((129)) and analytical first integral (118).
Theorem 8.1. The system (4)–(7), (10)–(15) under the

conditions (20), (64), (19) possesses eight invariant relations
(the complete tuple), three of which are the transcendental
functions from the complex analysis view of point. Herewith,
all the relations express in terms of the finite combination of
the elementary functions.

C. Topological analogies

Let consider the following third order system of the equa-
tions:

ξ̈ + b∗ξ̇ cos ξ + R3 sin ξ cos ξ − η̇1
2 sin ξ

cos ξ
= 0,

η̈1 + b∗η̇1 cos ξ + ξ̇η̇1
1 + cos2 ξ

cos ξ sin ξ
= 0, b∗ > 0,

(131)

describing the fixed spherical pendulum which is placed in a
flow of the filling medium under the absence of the depen-
dence of the moment of the forces on the angular velocity,
i.e. the mechanical system in the nonconservative field of the
forces. In general, the order of such system should be equal
to 4, but the phase variableη1 is the cyclic, that reduces to
the stratification of the phase space and the deflation.

Its phase space is the tangent stratification

TS2{ξ̇, η̇1, ξ, η1} (132)

to two-dimensional sphereS2{ξ, η1}, herewith, the equation
of the big circles

η̇1 ≡ 0 (133)

assigns the family of the integral manifolds.
It is not difficult to make sure that the system (131) is equiv-

alent to the dynamic system with the zero mean variable dis-
sipation on the tangent stratification (132) to two-dimensional
sphere. Moreover, the following theorem is equitable.
Theorem 8.2. The system (4)–(7), (10)–(15) under the

conditions (20), (138), (19) is equivalent to the dynamic system
(131).

Really, it is sufficient to acceptα = ξ, β1 = η1, b =
−b∗, R3 = cos(γ + β2).

VI. CASE OF THE DEPENDENCE OF THE MOMENT OF THE

NONCONSERVATIVE FORCES ON THE ANGULAR VELOCITY

A. Introduction on the dependence on the angular velocity

This section is devoted to dynamics of four-dimensional
rigid body on the four-dimensional space. But since this
section is devoted to the study of the case of the motion
under the presence of the dependence of the moment of forces
on the angular velocity tensor, we introduce such dependence
from more general positions. Additionally, the given point of
view helps us to introduce this dependence and for many-
dimensional ones.

Let x = (x1N , x2N , x3N , x4N ) are the coordinates of
the point N of the action of the nonconservative force
(of a medium interaction) to two-dimensional disk,Q =
(Q1, Q2, Q3, Q4) are the components not depending on the
angular velocity tensor. We shall introduce the dependence of
the functions(x1N , x2N , x3N , x4N ) on the angular velocity
tensor by the linear form only since given introduction itself
is not obvious a priori.

And so, let accept the following dependence:

x = Q + R, (134)

whereR = (R1, R2, R3, R4) is the vector-function containing
the components of angular velocity tensor. Herewith, the
dependence of the functionR on the angular velocity tensor
is gyroscopic:

R =




R1

R2

R3

R4




=

= −1
v




0 −ω6 ω5 −ω3

ω6 0 −ω4 ω2

−ω5 ω4 0 −ω1

ω3 −ω2 ω1 0







h1

h2

h3

h4




. (135)

Here (h1, h2, h3, h4) are the certain positive parameters.
And now, with the reference to our problem, sincex1N ≡

x2N ≡ 0, then

x3N = Q3− h1

v
(ω4−ω5), x4N = Q4− h1

v
(ω3−ω2). (136)

B. Reduced system

Similarly to the choice of the Chaplygin analytical functions

Q3 = A sin α cos β1, Q4 = A sin α sin β1, A > 0, (137)

we shall accept the dynamic functionss, x3N andx4N as the
following form:

s(α) = B cosα, B > 0, h = h1 > 0, v 6= 0, h = h2 > 0,

x3N

(
α, β1, β2,

Ω
v

)
= A sin α cos β1 − h

v
(ω4 − ω5), (138)

x4N

(
α, β1, β2,

Ω
v

)
= A sin α sin β1 − h

v
(ω3 − ω2),

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION 
DOI:  10.46300/9102.2022.16.8 Volume 16, 2022

E-ISSN: 1998-0159 52



which convincesus that the additional dependence of the
damping moment of the nonconservative forces (and the
dispersing one in some domains of the phase space) is also
present in considered system (i.e. the dependence of the
moment on the angular velocity tensor is present). Moreover,
h1 = h2, h3 = h4 by virtue of the dynamical symmetry (17)
of the body.

Later on, let accept the system of discoursesI which takes
into account and the system of discoursesII (see above).

We shall arouse to introduce the following variables in this
section:

u1 = ω2 − ω3,

u2 = ω4 − ω5,

u3 = ω2 cos β2 − ω3 sin β2,

u4 = ω4 cos β2 − ω5 sin β2.

(139)

Really, the assigned coordinates are defined correctly for

cos β2 6= sin β2, (140)

and Jacobian of the mapping is equal to

− 1
(cos β2 − sinβ2)2

, (141)

herewith, the inverse transformation is assigned as follows:

ω2 =
u3 − u1 sin β2

cos β2 − sin β2
,

ω3 =
u3 − u1 cosβ2

cos β2 − sin β2
,

ω4 =
u4 − u2 sin β2

cos β2 − sin β2
,

ω5 =
u4 − u2 cosβ2

cos β2 − sin β2
,

(142)

and the particularcase

cos β2 = sin β2, (143)

which simplifies the dynamic equations can be considered
separately.

Then the equations (33)–(38) under the condition (138)
outside of and only outside of the manifold

O3 =
{

(α, β1, ω2, ω3, ω4, ω5) ∈ R6 : α =
π

2
+ πk, k ∈ Z

}

(144)
transformto the following equations:

α̇− u3 sin β1 + u4 cos β1−
−σn2

0v sin α + σH ′
1[−u1 sin β1 + u2 cos β1] = 0, (145)

β̇1 sin α− cos α[u3 cos β1 + u4 sin β1]−
−σH ′

1 cos α[u1 cos β1 + u2 sin β1] = 0, (146)

u̇1 = −n2
0v

2r1 sin α cosα sin β1− Bvh

I1 + I3
r1u1 cos α, (147)

u̇2 = n2
0v

2r1 sinα cos α cosβ1 − Bvh

I1 + I3
r1u2 cos α, (148)

u̇3 = −n2
0v

2 sin α cos α sin β1 cos(γ + β2)−

− Bvh

I1 + I3
u1 cosα cos(γ + β2), (149)

u̇4 = n2
0v

2 sin α cosα cos β1 cos(γ + β2)−

− Bvh

I1 + I3
u2 cosα cos(γ + β2), (150)

where

r1 = cos γ−sin γ 6= 0, n2
0 =

AB

I1 + I3
, H ′

1 =
Bh

I1 + I3
. (151)

We notethat the particular case

cos γ = sin γ (r1 = 0), (152)

which simplifies the dynamic equations can also be considered
separately (similarly the case (143)).

Let introduce the following phase variables by the formulas:

v1 = −u1 sin β1 + u2 cos β1,

v2 = u1 cos β1 + u2 sin β1,

v3 = −u3 sin β1 + u4 cos β1,

v4 = u3 cos β1 + u4 sin β1.

(153)

then outside of and only outside of the manifold

O4 =
{
(α, β1, u1, u2, u3, u4) ∈ R6 : β1 = πk, k ∈ Z

}
(154)

the system (145)–(150) has the form

α̇ = −v3 − bH1v1 + b sin α, (155)

β̇1 = [v4 + bH1v2]
cosα

sin α
, (156)

v̇1 = n2
0v

2r1 sinα cos α−
−H ′

1vr1v1 cos α− v2 · [v4 + bH1v2]
cos α

sin α
, (157)

v̇2 = −H ′
1vr1v2 cosα + v1 · [v4 + bH1v2]

cosα

sin α
, (158)

v̇3 = n2
0v

2 sin α cosα cos(γ + β2)−
−H ′

1vv1 cosα cos(γ + β2)− v4 · [v4 + bH1v2]
cos α

sinα
, (159)

v̇4 = −H ′
1vv2 cosα cos(γ + β2)+

+v3 · [v4 + bH1v2]
cos α

sin α
, (160)

wherewe introduceasbefore the dimensionless parameters as
follows:

n2
0 =

AB

I1 + I3
, b = σn0, [b] = 1,

H1 =
H ′

1

n0
=

Bh

(I1 + I3)n0
, [H1] = 1. (161)

Let alsointroduce one more auxiliary change of the part of
the phase variables, as follows:

s1 = v3 + bH1v1, s2 = v4 + bH1v2. (162)

Then the investigated system (155)–(160) after the introduc-
tion of dimensionless variables and differentiability

vk 7→ n0vvk, k = 1, . . . , 4, < · >= n0v <′>, (163)

will rewrite as the form

α′ = −s1 + b sinα, (164)
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β′1 = s2
cos α

sin α
, (165)

s′1 = R1 sin α cos α− s2
2

cos α

sinα
−R1H1v1 cosα, (166)

s′2 = s1s2
cosα

sin α
−R1H1v2 cos α, (167)

v′1 = R2 sin α cosα− s2v2
cosα

sin α
−H1R2v1 cosα, (168)

v′2 = s2v1
cos α

sin α
−H1R2v2 cosα, (169)

where

R1 = bH1(cos γ − sin γ) + cos(γ + β2),

R2 = r1 = cos γ − sin γ. (170)

Obviously, that forH1 = 0 formally the independent fourth
order subsystem (164)–(167) stands out in the system (164)–
(169) on the tangent stratificationTS2 to two-dimensional
sphereS2{0 < α < π, 0 ≤ β1 < 2π}, in which, in turn, it
can be stand out the independent third order subsystem (164),
(166), (167) on its own three-dimensional phase manifold.

But, in principle, it is just understood, since forH1 = 0
we are under the conditions of absence of moment of the
forces on the angular velocity tensor (see previous section and
the system (80)–(82), (85)). The latter fact allows to integrate
completely similarly the considered fourth order system (164)–
(167), but signifies, and the considered sixth order system
(164)–(169), since there exist two independent analytical first
integrals (31), (32) or (119), (120) (see above on two systems
of discoursesI and II).

And in the given case it is great for us thatH1 6= 0.
Therefore, we transform the having analytical first integrals
(31), (32) or (119), (120). We have the evident type of its in
the different variables:

u3 − u1 sinβ2

cosβ − 2− sin β2
sin γ − u3 − u1 cosβ2

cos β − 2− sin β2
cos γ =

= W ′
1 = const, (171)

u4 − u2 sinβ2

cosβ − 2− sin β2
sin γ − u4 − u2 cosβ2

cos β − 2− sin β2
cos γ =

= W ′
2 = const. (172)

If we considerthe case (20) (i.e., in particular, when the
valueβ2 is the identical constant along the phase trajectories),
then the following analytical functions are constant on the
phase trajectories of the considered system:

u3(sin γ − cos γ) + u1 cos(γ + β2) = W 0
1 = const, (173)

u4(sin γ − cos γ) + u2 cos(γ + β2) = W 0
2 = const. (174)

In another variables the latter two invariant relations have
the forms

(v2 cos β1 − v1 sin β1) cos(γ + β2)+

+(v4 cos β1−v3 sin β1)(sin γ−cos γ) = W 0
1 = const, (175)

(v2 sin β1 + v1 cos β1) cos(γ + β2)+

+(v4 sin β1+v3 cos β1)(sin γ−cos γ) = W 0
2 = const, (176)

or
R1v2 cosβ1 −R1v1 sin β1+

+R2[s1 sin β1 − s2 cosβ1] = W 0
1 = const, (177)

R1v2 sin β1 + R1v1 cosβ1−
−R2[s1 cosβ1 + s2 sinβ1] = W 0

2 = const, (178)

where

R1 = cos(γ + β2) + bH1(cos γ − sin γ),

R2 = cos γ − sin γ (179)

as before.
Later on, let express from the relations (177), (178) the

valuesv1, v2. We have:

v2R1 = R2s2 + ψ1(β1,W
0
1 ,W 0

2 ), (180)

v1R1 = R2s1 + ψ2(β1,W
0
1 ,W 0

2 ), (181)

where

ψ1(β1,W
0
1 ,W 0

2 ) = W 0
1 cosβ1 + W 0

2 sinβ1,

ψ2(β1,W
0
1 ,W 0

2 ) = W 0
2 cosβ1 −W 0

1 sinβ1.
(182)

Then the system (164)–(167) has the form of the indepen-
dent fourth order system:

α′ = −s1 + b sinα, (183)

s′1 = R1 sin α cosα− s2
2

cos α

sin α
−

−R2H1s1 cos α−H1ψ2(β1, W
0
1 ,W 0

2 ) cosα, (184)

s′2 = s1s2
cos α

sin α
−

−R2H1s2 cos α−H1ψ1(β1, W
0
1 ,W 0

2 ) cosα, (185)

β′1 = s2
cosα

sin α
. (186)

The system (183)–(186)can be considered as the system
(164)–(167) which is reduced to the levels(W 0

1 ,W 0
2 ) of the

analytical first integrals (177), (178).
Obviously, that

ψ1(β1, 0, 0) ≡ ψ2(β1, 0, 0) ≡ 0. (187)

Therefore, we shall consider the system (183)–(186) on the
zero levels of the analytical first integrals (177), (178):

W 0
1 = W 0

2 = 0, (188)

which has the form

α′ = −s1 + b sinα, (189)

s′1 = R1 sin α cos α− s2
2

cos α

sinα
−R2H1s1 cosα, (190)

s′2 = s1s2
cosα

sin α
−R2H1s2 cos α, (191)

β′1 = s2
cosα

sin α
. (192)

The given system can be considered on the tangent stratifica-
tion TS2 to two-dimensional sphereS2{0 < α < π, 0 ≤ β1 <
2π}, in which, in turn, it can be stand out the independent third
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order subsystem (189)–(191)on its own three-dimensional
phase manifold.

And so, for the integration of the sixth order system at the
beginning we used the system of discoursesI (see above),
when we did not yet take into account the existence of two
independent analytical first integrals of the forms (31), (32).
In consequence we have limited (reduced) the considered
sixth order system on the levels (in consequence zero) of the
assigned first integrals, i.e. the system of discoursesII was
used (see above).

C. Complete list of invariant relations

At the beginning we compare the third order system (189)–
(191) to the nonautonomous second order system

ds1

dα
=

R1 sin α cos α− s2
2 cosα/ sin α−R2H1s1 cos α

−s1 + b sin α
,

ds2

dα
=

s1s2 cos α/ sin α−R2H1s2 cosα

−s1 + b sinα
.

(193)
Let rewrite the system (193) on algebraic form using the

substitutionτ = sin α

ds1

dτ
=

R1τ − s2
2/τ −R2H1s1

−s1 + bτ
,

ds2

dτ
=

s1s2/τ −R2H1s2

−s1 + bτ
.

(194)

Later on, if we introduce the uniform variables by the
formulas

s1 = t1τ, s2 = t2τ, (195)

we shall reduce the system (194) to the following form:

τ
dt1
dτ

+ t1 =
R1 − t22 −R2H1t1

−t1 + b
,

τ
dt2
dτ

+ t2 =
t1t2 −R2H1t2

−t1 + b
,

(196)

that is equivalent to

τ
dt1
dτ

=
t21 − t22 − (b + R2H1)t1 + R1

−t1 + b
,

τ
dt2
dτ

=
2t1t2 − (b + R2H1)t2

−t1 + b
.

(197)

Let comparethe secondorder system (197) to the nonau-
tonomous first order equation

dt1
dt2

=
t21 − t22 − (b + R2H1)t1 + R1

2t1t2 − (b + R2H1)t2
, (198)

which is reduceduncomplicatedto the complete differential:

d

(
t21 + t22 − (b + R2H1)t1 + R1

t2

)
= 0. (199)

And so, the equation (198) has the following first integral:

t21 + t22 − (b + R2H1)t1 + R1

t2
= C1 = const, (200)

which in former variables is looked like

s2
1 + s2

2 − (b + R2H1)s1 sin α + R1 sin2 α

s2 sin α
= C1 = const.

(201)

Remark 8.3. Let considerthesystem (189)–(191) with zero
mean variable dissipation which becomes the conservative for
b = R2H1:

α′ = −s1 + b sinα,

s′1 = R1 sin α cosα− s2
2

cos α

sin α
− bs1 cosα,

s′2 = s1s2
cosα

sin α
− bs2 cos α.

(202)

It has two the analytical first integrals of the forms

s2
1 + s2

2 − 2bs1 sin α + R1 sin2 α = C∗1 = const, (203)

s2 sin α = C∗2 = const. (204)

It is obviously that the ratio of two the first integrals (203),
(204) is also the first integral of the system (202). But for
b 6= R2H1 each of functions

s2
1 + s2

2 − (b + R2H1)s1 sinα + R1 sin2 α (205)

and (204) are not the first integrals of the system (189)–(191)
separately. However, the ratio of the functions (205), (204) is
the first integral of the system (189)–(191) for anyb, R2H1.

Later on, let find the evident form of the additional first
integral of the third order system (189)–(191). At the begin-
ning for this we shall transform the invariant relation (200)
for u1 6= 0 as follows:

(
t1 − b + R2H1

2

)2

+
(

t2 − C1

2

)2

=

=
(b + R2H1)2 + C2

1 − 4R1

4
. (206)

As is seen,theparameters of given invariant relation should
satisfy the condition

(b + R2H1)2 + C2
1 − 4R1 ≥ 0, (207)

and the phase space of the system (189)–(191) is stratified on
the family of the surfaces which is assigned by the equality
(206).

Thus, by virtue of the relation (200) the first equation of
the system (197) has the form

τ
dt1
dτ

=
2t21 − 2(b + R2H1)t1 + 2R1 − C1U1(C1, t1)

b− t1
,

(208)
where

U1(C1, t1) =
1
2
{C1 ± U2(C1, t1)}, (209)

U2(C1, t1) =
√

C2
1 − 4(R1 − (b + R2H1)t1 + t21),

herewith, the constantof the integrationC1 is chosen from the
condition (207).

Therefore, the quadrature for the search of the additional
first integral of the system (189)–(191) has the form

∫
dτ

τ
=

=
∫

(b− t1)dt1
2(R1 − (b + R2H1)t1 + t21)− C1{C1 ± U2(C1, t1)}/2

.

(210)
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The left-hand side(accurateto the additive constant), obvi-
ously, is equal to

ln | sin α|. (211)

If

t1− b + R2H1

2
= w1, b2

1 = (b+R2H1)2 +C2
1 −4R1, (212)

then the right-hand side of the equality (210) has the form

−1
4

∫
d(b2

1 − 4w2
1)

(b2
1 − 4w2

1)± C1

√
b2
1 − 4w2

1

−

−(b + R2H1)
∫

dw1

(b2
1 − 4w2

1)± C1

√
b2
1 − 4w2

1

=

= −1
2

ln

∣∣∣∣∣

√
b2
1 − 4w2

1

C1
± 1

∣∣∣∣∣±
b + R2H1

2
I1, (213)

where

I1 =
∫

dw3√
b2
1 − w2

3(w3 ± C1)
, w3 =

√
b2
1 − 4w2

1. (214)

Threecases arepossiblefor the calculation of the integral
(214).
I. (b + R2H1)2 − 4R1 > 0.

I1 = − 1
2W1

×

× ln

∣∣∣∣∣
W1 +

√
b2
1 − w2

3

w3 ± C1
± C1

W1

∣∣∣∣∣ +

+
1

2W1
ln

∣∣∣∣∣
W1 −

√
b2
1 − w2

3

w3 ± C1
∓ C1

W1

∣∣∣∣∣ + (215)

+const,

W1 =
√

(b + R2H1)2 − 4R1.

II. (b + R2H1)2 − 4R1 < 0.

I1 =
1√

4R1 − (b + R2H1)2
arcsin

±C1w3 + b2
1

b1(w3 ± C1)
+ const.

(216)
III. (b + R2H1)2 − 4R1 = 0.

I1 = ∓
√

b2
1 − w2

3

C1(w3 ± C1)
+ const. (217)

Whenwe return tothe variable

w1 =
s1

sin α
− b + R2H1

2
, (218)

we shall have the final form for the valueI1:
I. (b + R2H1)2 − 4R1 > 0.

I1 =

= − 1
2W1

ln

∣∣∣∣∣
W1 ± 2w1√

b2
1 − 4w2

1 ± C1

± C1

W1

∣∣∣∣∣ +

+
1

2W1
ln

∣∣∣∣∣
W1 ∓ 2w1√

b2
1 − 4w2

1 ± C1

∓ C1

W1

∣∣∣∣∣ + (219)

+const.

II. (b + R2H1)2 − 4R1 < 0.

I1 =
1√

4R1 − (b + R2H1)2
×

× arcsin
±C1

√
b2
1 − 4w2

1 + b2
1

b1(
√

b2
1 − 4w2

1 ± C1)
+ const. (220)

III. (b + R2H1)2 − 4R1 = 0.

I1 = ∓ 2w1

C1(
√

b2
1 − 4w2

1 ± C1)
+ const. (221)

So, the additional firstintegral was found right before for
the third order system (189)–(191), i.e. it was presented the
complete tuple of the first integrals which are the transcen-
dental functions of its own phase variables.
Remark 8.4. It is necessary to substitute formally the left-

hand side of the first integral (200) instead ofC1 in the
expression of the found first integral.

Then the obtained additional first integral has the following
structural form (which is similar to the transcendental first
integral from the planeparallel dynamics):

ln | sin α|+ G2

(
sin α,

s1

sin α
,

s2

sin α

)
= C2 = const. (222)

Thus, there arealready found two the independent first
integrals for the integration of the fourth order system (189)–
(192). And for the complete its integrability, as specified
above, it is sufficient to find the additional first integral which
”connects” the equation (192).

Since
dt2
dτ

=
2t1t2 − (b + R2H1)t2

(b− t1)τ
,

dβ1

dτ
=

t2
(b− t1)τ

, (223)

then
dt2
dβ1

= 2t1 − (b + R2H1). (224)

It is obvious that fort2 6= 0 the following equality is fulfilled

t1 =
1
2

(
(b + R2H1)±

√
b2
1 − (2t2 − C1)

2

)
, (225)

b2
1 = (b + R2H1)2 + C2

1 − 4R1,

then the integration of the following quadrature:

β1 + const= ±
∫

dt2√
b2
1 − (2t2 − C1)

2
(226)

will bring to the invariant relation

2(β1 + C3) =

= ± arcsin
2t1 − C1√

(b + R2H1)2 + C2
1 − 4R1

, C3 = const.

(227)
In otherwords, the equality

sin[2(β1 + C3)] = ± 2t2 − C1√
(b + R2H1)2 + C2

1 − 4R1

(228)

is fulfilled and underthe transition to the old variables

sin[2(β1 + C3)] = ± 2s2 − C1 sinα√
(b + R2H1)2 + C2

1 − 4R1 sinα
.

(229)
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In principle, it makes possible to stop on the latter equality
to achieve the additional invariant relation ”connecting” the
equation (192), if we add to this equality that it is necessary
to substitute formally the left-hand side of the first integral
(200) instead ofC1 in the latter expression.

But we shall make the certain transformations which reduce
to the obtaining of the following evident form of the additional
first integral (herewith, the equality (200) is used):

tg2[2(β1 + C3)] =

=
(t22 − t21 + (b + R2H1)t1 −R1)2

t22(2t1 − (b + R2H1))2
. (230)

Returningto theold coordinates, we shall obtain the addi-
tional invariant relation as the form

tg2[2(β1 + C3)] =

=
(s2

2 − s2
1 + (b + R2H1)s1 sin α−R1 sin2 α)2

s2
2(2s1 − (b + R2H1) sin α)2

, (231)

or finally

−β1 ± 1
2
×

×arctg
s2
2 − s2

1 + (b + R2H1)s1 sin α−R1 sin2 α

s2(2s1 − (b + R2H1) sin α)
= (232)

= C3 = const.

And so, the system of dynamic equations (4)–(7), (10)–
(15) under the condition (138) has nine invariant relations in
considered case: there exist the analytical nonintegrable con-
straints (20), the cyclic first integrals (18), (19), the analytical
first integrals (31), (32), the first integral (201) and also there
exists the first integral expressed by the relations (215)–(222)
which is the transcendental function of its phase variables (in
sense of complex analysis also) and expresses in terms of
finite combination of the elementary functions, and finally the
transcendent first integral (232).
Theorem 8.3. The system (4)–(7), (10)–(15) under the

conditions (20), (138), (19), (188) possesses nine invariant
relations (the complete tuple), three of which are the tran-
scendental functions from the complex analysis view of point.
Herewith, all the relations express in terms of the finite
combination of the elementary functions.

We also note that in the similar theorem 8.1 of this section
the question is on the complete tuple of the first integrals
which consisting on eight the first integrals, although there
are exist all nine the first integrals. But at proof of theorem
8.1 the system of discoursesI is used (se above) which implies
the introduction of such phase coordinates (in particular,
wk, k = 1, . . . , 4), in which the system vector field allows the
additional stratifications. Herewith, the analytical first integrals
(31), (32) do not use directly, that is admit to dispense by the
less quantity of the first integrals.

And at proof of the theorem 8.3 the system of discourses
II is used (see above) which implies the reduction of inves-
tigated system on (zero) levels of the analytical first integrals
(31), (32). The latter fact takes into account in principal the
complete tuple of the having first integrals.

D. Topological analogies

Let consider the following third order system of the equa-
tions:

ξ̈ + (b∗ −H∗
1 )ξ̇ cos ξ + R3 sin ξ cos ξ − η̇1

2 sin ξ

cos ξ
+

+ H∗∗
1 [W 0

1 sin η1 −W 0
2 cos η1] = 0,

η̈1 + (b∗ −H∗
1 )η̇1 cos ξ + ξ̇η̇1

1 + cos2 ξ

cos ξ sin ξ
+

+ H∗∗
1 [W 0

1 cos η1 + W 0
2 sin η1] = 0, b∗ > 0, H∗∗

1 > 0,
(233)

describing the fixed spherical pendulum which is placed in a
flow of the filling medium under the presence of the depen-
dence of the moment of the forces on the angular velocity,
i.e. the mechanical system in the nonconservative field of the
forces. Unlike previous activities [1], [5], [6], the order of such
system is equal to 4 (but not 3) since the phase variableη1 is
not the cyclic, that does not reduce to the stratification of the
phase space and the deflation.

Its phase space is the tangent stratification

TS2{ξ̇, η̇1, ξ, η1} (234)

to two-dimensional sphereS2{ξ, η1}, herewith, the equation
of the big circles

η̇1 ≡ 0 (235)

assigns the family of the integral manifolds forW 0
1 = W 0

2 = 0
only.

It is not difficult to make sure that the system (233)
is equivalent to the dynamic system with the (zero mean)
variable dissipation on the tangent stratification (234) to two-
dimensional sphere. Moreover, the following theorem is equi-
table.
Theorem 8.4. The system (4)–(7), (10)–(15) under the

conditions (20), (138), (19) is equivalent to the dynamic system
(233).

Really, it is sufficient to acceptα = ξ, β1 = η1, b =
−b∗, H1 = H∗∗

1 , R2H1 = −H∗
1 , R1 − bR2H1 = R3.

VII. C ONCLUSION

In the previous studies of the author, the problems on the
motion of the four-dimensional solid were already considered
in a nonconservative force field in the presence of the follow-
ing force. This study opens a new cycle of works on integra-
tion of a multidimensional solid in the nonconservative field
because previously, as was already specified, we considered
only such motions of a solid when the field of external forces
was the potential.
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