
Ascertaining Important Features of the JAPROSIM

Simulation Library

Brahim Belattar

Department of computer Science

University Colonel El Hadj Lakhdar

Batna 05000, Algeria

brahim.belattar@univ-batna.dz

Abdelhabib Bourouis

Department of computer Science

University Larbi Ben M’Hidi

Oum El Bouaghi 04000, Algeria

habib.bourouis@hotmail.com

Abstract—This paper describes important features of

JAPROSIM, a free and open source simulation library

implemented in Java programming language. It provides a

framework for building discrete event simulation models. The

process interaction world view adopted by JAPROSIM is

discussed. We present the architecture and major components of

the simulation library. In order to ascertain important features of

JAPROSIM, examples are given. Further motivations are

discussed and suggestions for improving our work are given.

Keywords— Discrete Event Simulation; Object-Oriented

Simulation; Process Interaction Worldview; Java-based modeling

and simulation; JAPROSIM

I. INTRODUCTION

From an external point of view, the principal component of
simulation software is the simulation language (SL) which
allows description of simulation models and their dynamic
behavior. Such languages are descendants of programming
languages like FORTRAN, or ALGOL [1]. Part of this heritage
includes the batch-programming environment. To generate a
program, the user had to create a source file, compile it, link it
and then execute it. The user detects syntax errors in the
compilation phase, and run time errors in the execution phase.
To correct any errors, all phases have to be repeated. Such a
procedure presents an extremely cumbersome interface to the
user and is very time-consuming. Actual trends are in favor of
integrated simulation and modeling environments where
graphical user interfaces (GUI) play a great deal. This had led
to the development and marketing of a huge amount of such
environments from a multitude of sources.

Today, Object Oriented Modeling (OOM) is largely
recognized as an excellent approach that deals with large and
complex systems through abstraction, modularity,
encapsulation, layering and reuse. A conceptual model is
obtained by decomposing a real system in a set of objects in
interaction. Each object represents a real world entity that
encapsulates state and behavior. A class is a template for
creating objects that share common related characteristics.
Object Oriented Simulation (OOS) benefits from all the
powerful features of the OOM especially model
conceptualization which is one of the early steps in a
simulation study.

JAPROSIM is an object oriented simulation library, free
and open source that adopts the popular process interaction
worldview. Its design is simple and easy to understand. The
library is implemented in Java programming language allowing
deep access to its powerful features. Java is a general purpose
language for creating safe, portable, robust, object-oriented,
multithreaded and interactive programs for theoretically any
area of application. It provides several extensive class libraries
for developing graphical user interfaces, network and
distributed applications with capabilities for web-based
computing. It also has a utility package that contains useful
classes that implement vectors, arrays, linked lists, hash
tables…etc. These features justify the choice of Java as an
implementation language for the JAPROSIM library. The
library is documented using the UML and is divided into
packages to organize the collection of classes into important
functional areas. It is easy to build discrete event simulation
models using JAPROSIM, either for experimented
programmers in Java or for simulation experts with elementary
programming knowledge. JAPROSIM can serve as a basis for
the development of dedicated object-oriented simulation
environments. Furthermore, since Java has been commonly
adopted as a teaching language in Computer Science area,
JAPROSIM may also serves as an academic material for
teaching discrete event modelling and simulation.

The structure of this paper is as follows: In section 2, we

present an overview of related work. In section 3 we describe

the process interaction world view adopted by JAPROSIM. In

section 4 major components of the simulation library and its

architecture are detailed. Examples are given in order to

ascertain important features of JAPROSIM. Section 6

summaries the paper and provides suggestions for future

improvements of our work.

II. RELATED WORK

A large research effort has been devoted to enrich
mainstream languages as C, C++, Java, Python with simulation
capabilities [2]. The most common choice is to provide the
additional simulation functionality through a software library.
Independently of the architectural level at which they are
provided (application, library, language), the simulation

Received: May 5, 2021. Revised: Novemeber 18, 2021. Accepted: December 26, 2021. Published: January 12, 2022.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2022.16.6 Volume 16, 2022

E-ISSN: 1998-0159 29

capabilities embody a world view for their users. The world
view is essentially the set of concepts that constitute the basic
elements available to the modeler to compose and to specify
the simulation. The diverse world views are functionally
equivalent, but differ in expressive power and in terms of
computational efficiency. The idea of building process-
oriented simulations using a general purpose object-oriented
programming language is not original and several tools were
developed in this way. For example, both of CSIM++ [3] and
YANSL [4] are based on C++, while PsimJ [5], JSIM [6] are
based on Java. Discrete Event Simulation tools written in Java,
like PsimJ and SSJ [7] are well designed and freeware libraries
but not open source. Silk [8] is also well designed but is a
commercial tool.

There is also a large collection of free open source libraries,
we may consider for instance:

• JavaSim [9] is a set of Java packages for building
discrete event process-based simulation, similar to that
in Simula and C++SIM.

• JSIM [6] is a Java-based simulation and animation
environment supporting Web-Based Simulation.

• Simjava [10] is a process based discrete event
simulation package for Java, similar to Jade's Sim++,
with animation facilities.

• jDisco [11] is a Java package for the simulation of
systems that contains both continuous and discrete-
event processes.

• DESMO-J [12] is a framework which supports both
event and process worldviews.

• SimKit [13] is a component framework for discrete
event simulation, influenced by MODSIM II and based
on the event graph modeling.

SimJava and JSim are among the first implementations of
the thread-based class of simulators. These early efforts pay
particular attention to web-based simulation and to the Java
Applet deployment model. Many simulators aim at replicating
the functionality and design of Simula in Java. For example,
DesmoJ supports advanced process-oriented modeling features.
These include capacity-constrained resources, conditional
waiting and special process relationships as producer/consumer
and asymmetric master/slave. SSJ is designed for performance,
flexibility and extensibility. It offers its users the possibility to
choose between many alternatives for most of the internal
algorithms and data structures of the simulator [2].

JAPROSIM is not a java version of any existing simulation
language as Simjava or JavaSim. There are, however, unique
aspects in JAPROSIM that lead to fundamental distinctions
between our work and others. For example, JAPROSIM
embeds a hidden mechanism for automatic collection of
statistics. This approach enables a clean separation between
implementing the dynamics of the model and gathering data, so
traditional performance measurements are automatically
computed. The model can thus be created without any concern
over which statistics are to be estimated, and the model classes
themselves will not contain any code involved with statistics.

This leads in more code source clarity. Nevertheless, users
could, if needed, implement specific statistics collection using
different classes offered by the JAPROSIM statistics package.
This feature makes the key difference between JAPROSIM and
the other discrete event simulation libraries written in Java.
Exception is made for SimKit which already offers this
possibility, but which uses a different modeling approach based
on event graphs.

III. THE PROCESS-INTERACTION WORLDVIEW

Process-interaction simulation denotes a particular world-
view used to model the dynamics of discrete-event systems.
The origins of this approach can be traced to the authors of
SIMULA. It provides a way to represent a system's behavior
from the active entities point of view. As in SIMULA, active
entities are transient entities moving through the system
(dynamic entities). A process-oriented model is a description of
the sequence of processing steps these entities experience as
they flow through the system [14]. This approach has
significant intuitive appeal and is the predominant modeling
worldview supported by commercial simulation software tools.
Transaction flow is a special case of the more general process
interaction worldview.

A system is modeled as a set of active entities in
interaction. Interaction is a consequence of competition and/or
cooperation for the acquisition of critical resources. Each active
entity’s life cycle consists of a sequence of events, activities
and delays. A routine implementing an active entity requires
special mechanisms for interrupting, suspending and resuming
its execution at a later simulated time under the control of an
internal event scheduler. This can be achieved using special
programming languages that offer at least a SIMULA’s
coroutine like mechanism, thus programming languages
offering multithreading like Java are suitable.

An entity’s life cycle is a sequence of active and passive
phases. On one hand, an active phase is characterized by the
execution of the relevant process. Normally this corresponds to
the events during which system state changes without
progression of simulation time. On the other hand, passive
phases are characterized by activities and delays. So the
relevant process is suspended while simulation time advances.
Events are the criterion of scheduling which explain the use of
a future event list (FEL). After a process is suspended, the
scheduler resumes and decides of which is the next process to
reactivate according to the system state and the FEL. The
scheduler is a special process that coordinates the execution of
a simulation model.

IV. THE JAPROSIM LIBRARY

The JAva PRocess Oriented SIMulation (JAPROSIM)
library is part of an ongoing project that aims at providing an
advanced visual interactive simulation and modeling
environment for Discrete Event Systems (DES). The library is
currently divided into six main packages:

• Kernel: a set of classes dealing with active entities,
scheduler, queues and resources.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2022.16.6 Volume 16, 2022

E-ISSN: 1998-0159 30

• Random: contains classes for uniform random stream
generation.

• Distributions: contains a rich set of classes for useful
probability distributions.

• Statistics: contains classes representing intelligent
statistical variables.

• GUI: a set of graphical user interface classes to use for
project parameterization, trace and simulation results
presentation.

• Utilities: a set of useful classes for express model
development.

We will focus on the simulation kernel, random, statistics
and utilities packages.

A. The Kernel Package

The kernel package is at the heart of JAPROSIM. It is made
up of classes dealing with active entities, scheduler, queues and
resources. The coroutine like mechanism is implemented
trough SimProcess, Scheduler, StaticEntity and Entity classes.
A coroutine program is a collection of coroutines which run in
quasi-parallel with one another. Each coroutine is an object
with its own execution state, so that it may be suspended and
resumed. Our aim in the design of JAPROSIM was putting a
great emphasis into following the semantic of SIMULA but the
design itself is not close to it. The advantage of this approach is
that design is simpler without explicit coroutine class support
and the semantics of facilities that are well-known and
thoroughly tested through many years use of SIMULA are
completely supported. A UML class diagram of the kernel is
given below.

Fig. 1. The Kernel class diagram

B. The Random and Statistics Packages

Random number generators (RNGs) are the basic tools of

stochastic modeling. The random package provides the

RandomStream interface which represents a base reference for

creating Random Number Generators. Each RNG must rewrite

the RandU01() method which normally returns a uniformly

distributed number (a Java double) in the interval [0, 1].

JAPROSIM provides a set of well known good RNGs see [15]

and [16], as Park-Miller, McLaren-Marsaglia and RandMrg in

which the backbone generator is the combined multiple

recursive generator (CMRG) proposed in [17]. The

setSeed(long[] seed) method is used to specify seeds instead of

default values.

Fig. 2. The distribution sub-package

The user can define its own RNG by implementing the

RandomStream interface. To be used with JAPROSIM, an

instance of the user-defined RNG must be assigned to the

Scheduler’s static public attribute rng. A prosperous set of

discrete and continuous Random Variate Generators (RVGs)

is offered by the distribution sub-package. This set covers

typically most practical distributions to be used in discrete

event simulation. However, the user could supply it with

additional RVGs.

The statistics package provides two useful classes.

DoubleStatVar class dealing with time-independent statistical

variables (having double values) as response time and waiting

time in a queue. It implements the mechanisms for keeping

track of observational-based statistics and must be updated

every time its value change using the update() method.

TimeIntStatVar class is used for time-dependent statistics

(with integer values) such as a queue length or number of

customers in a system. Typically, the user instantiates the

desired class, then puts and updates it in the appropriate code

locations. The placement of statistical variables and their

update is a source of several pitfalls. For this reason we have

enhanced automatic placement and update of those variables

for the most known and useful performance measures.

C. The Utilities Package

This package offers pre-specified entities with specific

behavior. The SimpleServiceStation is used to model

intelligent servers which are able to take decisions like “batch

servers”. The SymetricServiceStation models a service station

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2022.16.6 Volume 16, 2022

E-ISSN: 1998-0159 31

with identical servers while AsymetricServiceStation models a

service station with multiple heterogeneous servers. The

homogeneity/heterogeneity of servers here comes from service

distributions.

V. JAPROSIM BY EXAMPLES

This section discusses two simulation models which have
purposely been simplified in order to promote understanding
JAPROSIM capabilities. They give a good impression of the
wide applicability of simulation in production and logistics.
However, it is important to underline that with JAPROSIM, a
simulation model is simply a Java source program which
merges process interaction modeling features provided by the
library simulation packages with powerful features of the Java
programming language.

A. a Simple Queueing Network Scenario

Queueing network models have been used extensively as a
modeling paradigm for deriving analytical as well as
simulation based performance measures. They are commonly
used to model a wide range of discrete event systems.
Kendall’s notation is a mean for describing queueing networks
especially in case of simple systems. For complex ones, a
graphical notation with textual annotations is used instead. To
analyze the model either by simulation or by mathematical
analytic tools, the model is commonly coded and saved directly
in a proprietary file format.

In order to show JAPROSIM capabilities, we consider a
simple queuing network as depicted in Fig. 3. The network
contains two service stations; each of them has an unlimited
FIFO queue where transactions awaiting to be served are put.
The transactions (coming from two independent exogenous
sources) go into the system by means of two input points and
may leave it also using two output points, after being served.
We assume exponentially distributed random arrival times in
the input streams of transactions and exponentially distributed
random service time of both servers.

Fig. 3. A simple queuing network

The corresponding parameters of the simulation model are:

• γ 1=3.57 and γ 2=4.82, where γ i is the exogenous

arrival rate of the input source number i (and the
parameter of the exponential distribution of arrival
time).

• µ1=4.15, µ2=5.96, where µi is the parameter of the
exponential distribution of a server of the service station
number i.

• c1 = 3, c2 = 2, where ci is the number of identical
parallel servers at the ith service station.

• r11 = 0.17, r12 = 0.33, r21 = 0.23, r22 = 0.18, where rij
is the probability that a transaction moves from station i
to the station j.

As we can see, this is a single-class open network with
FCFS multi-server nodes, unlimited waiting rooms, reliable
servers and probabilistic routing. Thus the analytical solution is
given by the following equation system:

•

++=

++=

22211222

22111111

..

..

λλγλ
λλγλ

rr

rr

Where λ i is the effective rate at node i. The analytical

solution for this equation system is:

• λ 1=6.2041 and λ 2=6.8669

The stations utilization is:

• ρ
1=0.5360,

ρ
2=0.7184

To compute the steady state network performances we used
the RAQS (Rapid Analysis of Queueing Systems) software
developed at the Center for Computer Integrated
Manufacturing (CCIM) Oklahoma State University. The results
obtained are:

Fig. 4. RAQS output window

To build a simulation model for this example using
JAPROSIM, we can first identify two resources which
represent the two stations of the network. The first resource has
a capacity of three units and the second has a capacity of two
units. The two input arrivals in the network lead us to
distinguish between two active entities with distinct life cycles.
Since all transactions have the same priority, we can use one
class (named Transaction) for which the source code is:

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2022.16.6 Volume 16, 2022

E-ISSN: 1998-0159 32

Fig. 5. The transaction class.

From Fig. 5, it appears that the class structure consists of
data declarations (lines 4-14) which define the characteristics
of the simulation entities created from this class. The body()
method (line 18-25) is used to modify entity’s characteristics as
the state of the system changes. Each instance of this class is
assigned a set of static, user-defined attribute identifiers:

• arrival1 and arrival2 for arrival distributions

• serv1 and serv2 for service distributions

• queue1 and queue2 are the entities waiting queues

• server1 and server2 are service stations (resources).

In this example, each Transaction creates (lines 20/23) the
next arrival using a sample from a JAPROSIM Exponential
random variable object defined in the data declaration. The
hold() method is used to model a service with the specified
time duration. The delay parameter is then assigned a sample
value from the appropriate service time distribution (lines
32/44). More complex models would likely have different
distributions for different arrivals and services. We can
examine the use of passivate() inside a while() loop to insure
waiting until the condition being wrong (lines 28, 29, 40 and
41). The selection represents a CDF function values where
choice is the inverse transform function to get the destination
according to the routing probabilities. The source of the
transaction is identified by trID. In the body() method,
distinction between transactions is made according to their
trIDs. The intoStation1() and intoStation2() methods specify
the behavior of an entity in the corresponding station. While
each Transaction instance will have these unique attribute
identifiers, all of its instances will share common static class
variables representing either Java or JAPROSIM objects.

To run a JAPROSIM simulation, we need another class
which constitutes a starting point for any Java program. This
class contains a main() method for standalone programs or the
init() method for browser-based applets. In the example, this
class is called OpenNetwork and its java source code is:

Fig. 6. The OpenNetwork class.

When running the simulation model, the JAPROSIM
window is first displayed. It consists of an experimentation
frame where simulation parameters are to be set. Parameters
like the number of replications, the simulation duration, the
RNG used must be specified here by the user. A button
Run/Stop allows user to start simulation, stop and resume it at
any time during execution. Two other buttons are used for
presentation of simulation results and trace execution.

Fig. 7. JAPROSIM experimentation frame.

At the end of each simulation run, the simulation results
can be viewed in a textual form or in a graphical one. Textual
simulation results are expressed as statistical quantities which
resume resources and queues utilization during a run. On the
other hand, the graphical form uses plots, bar charts or pie
charts.

The JAPROSIM model of this example was executed for
35000 time units. The statistical results for the first replication
are given below:

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2022.16.6 Volume 16, 2022

E-ISSN: 1998-0159 33

Fig. 8. Statistical results.

The statistical results obtained have been compared with
those given by the analytical method (RAQS). Fig. 9
summarizes important performance measures as reported by
JAPROSIM at the end of simulation and the same measures as
calculated by RAQS.

Fig. 9 Simulation versus analytical solution.

We observe that the simulation results are closer to the
analytical solution. This justifies our claims that the
JAPROSIM library is well designed and results produced are
of high accuracy. However, it is known that simulation can
never give the exact solution as analytic methods do. This is
why we must run the model more than one time until we reach
the best solution. A statistical analysis of simulation results will
help in deciding to do other replications or not.

B. The Tvs inspection and adjustment Example

The second example illustrates a simplified simulation

model of a TVs inspection and adjustment process as described

in [18]. In this model, an arriving TV is first inspected at an

inspection station. If a TV is found to be functioning

improperly, it is routed to an adjustment station. After

adjustment, the TV is sent back to the inspection station where

it is again inspected. TVs passing inspection, whether to the

first time or after one or more routings through the adjustment

station, are sent to a packing area. A probabilistic branching is

used when a TV passes the inspection station. It specifies that

15% of the TVs inspected are sent to the adjustment station and

85% are sent to the packing area. The inter-arrival time

between TVs to the system, the inspection delay and the

adjustment delay are all modeled as uniform variates.

Fig. 10 The TVs Inspection example.

From the description given, we can easily identify two

resources which represent the two stations of the system

modeled. The first resource represents the inspector and has a

capacity of two units. The second resource represents the

adjustor and has a capacity of one unit. Since we have one

input arrivals, we distinguish one active entity in the model. A

class diagram of the JAPROSIM simulation model for this

example is shown below:

Fig. 11 A class diagram of the simulation model.

The JAPROSIM simulation model of the example uses two

classes named respectively TV1 and TVInspection

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2022.16.6 Volume 16, 2022

E-ISSN: 1998-0159 34

Fig. 12 Source code of The TV1 class.

We can easily distinguish four parts in the source code of

The TV1 class. The first part (from line 4 to line 11) serves to

set the parameters of the model. We can see that the inspection

delay, the adjustment delay and the inter-arrival time are

defined as uniform variates with specific arguments. We have

also to define the inspector and adjustor resources and their

associated queues. The variable destination is defined as a

uniform variate and is used when deciding if a TV just

inspected is to be routed to the adjustment station or to exit the

system.

The second part (from line 12 to line 15) serves to route the

active entity to the inspection station and to create next TVs

arrivals with respect to the inter-arrival time between TVs.

The third part (from line 16 to line 28) represents the classical

scheme of resource allocation. A TV arriving at the inspection

station is inserted in the associated queue. When a resource

unit is free, it is allocated to a waiting TV with respect to the

queue priority. An inspection delay associated to this TV is

sampled, and the TV will hold the resource unit seized until

the associated delay is elapsed. The resource unit is then

released and can be allocated to other waiting TVs. Line 28

serves to decide if the TV just inspected is to be routed to the

adjustment station or to exit the system.

The fourth part (from line 29 to line 39) models the adjustor

resource allocation scheme. A TV arriving at the adjustment

station is inserted in the associated queue. When the adjustor

resource is free, it is allocated to a waiting TV with respect to

the queue priority. An adjustment delay associated to this TV

is sampled, and the TV will hold the adjustor resource seized

until the associated delay is elapsed. The adjustor resource is

then released and the TV is sent back to the inspection station.

Like the first example, to run this simulation model, we

need another class which contains the main() method. It is

where simulation model would be initialized, and the

scheduler started. This class is called TVInspection and its

java source code is:

Fig. 13 Source code of the TVInspection class.

Beside classical statistical results like those presented with

the first example, JAPROSIM allows graphical presentation of

selected performance measures. Example of such presentation

is given in Fig. 14. It shows the utilization of the two

resources used in the simulation model during each

replication.

Fig. 14 Graphical Simulation results.

C. Important features of JAPROSIM

The examples presented reveal many advantages of the
object-orientation of JAPROSIM and the process interaction
worldview adopted. The relationship between the simulation
model and the real system is more obvious and therefore easier
to teach and to understand. The java source code of the
simulation model is easy to understand and users can learn far
more than if they have to experiment with sophisticated
commercial simulation packages in which important details of
the simulation implementation are hidden and thus never
understood.

Furthermore, we can observe in the source code of the

classes used in the JAPROSIM simulation models, that no

class of the statistics package is explicitly used. In addition, no

Java constructs are clearly used to do so. This is the key

feature of JAPROSIM that all well known and useful

performance measures are implicitly and automatically

handled. The user doesn’t worry about how many, or what

kind of statistical variables to use, nor where to place and

update them. Explicit statistical variable handling by the user

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2022.16.6 Volume 16, 2022

E-ISSN: 1998-0159 35

may lead to undetectable programming errors and pitfalls. It

could ruin simulation programs since the accuracy of

simulation results is crucial. This is why JAPROSIM is said to

be easy and safe to use for all users, including those who

aren’t qualified Java programmers. This mechanism is

embedded in the library. The SimProcess class declares a

protected static entitiesList which is a Java HashMap to collect

the residence time of each simulation entity class (a Java class

that extends the JAPROSIM Entity class). The key for the

HashMap is the class name and values are DoubleStatVar. In

the Entity constructor, each time a new entity class is created,

the above HashMap is updated. In the run() method of the

Entity Class and after the call to the body() method, the

residence time is updated using the simulation time and the

arrivalTime attributes.

Each Queue object possesses a statistical variable to hold

waiting time in it. This variable is updated trough

insert()/remove() methods. The number of entities in a queue

is handled by a length time-dependent statistical variable. The

resource availability is also a time-dependant variable. It is

used to compute resource utilization. The Queue class has a

static Java Vector to register all queues used in the simulation

model. In the same way, the Resource class also has an

analogous list to keep track of all used resources. Those lists

have a package visibility; hence they could be accessed by all

the simulation processes. They are updated each time a new

resource or queue instance is created. Nevertheless, the user is

free to use JAPROSIM statistics package classes in his

simulation code. It is clear that in practice, there may be

complex systems or situations that need specific statistics not

covered by JAPROSIM.

VI. CONCLUSION

In this paper we have presented the JAPROSIM library for
developing object-oriented simulations. From the examples
presented, many advantages of the object-orientation of
JAPROSIM and the process interaction worldview have been
exhibited. Today, JAPROSIM is a fully functional library
which has been tested thoroughly. JAPROSIM is distributed
since several years as an Open Source project. The source code
is available freely along with some documentation. Future
improvements will focus on increasing the JAPROSIM
performances, integrating a graphical model building facility,
providing animations of simulation models and using xml
standards for web-based simulation and interoperability with
other tools.

REFERENCES

[1] Korichi Ahmed, Belattar Brahim, Towards a Web Based Simulation

Groupware: Experiment with BSCW, WSEAS transactions on Business
and Economics, Issue 1, Volume 5, pp. 9-15, January 2008.

[2] Antonio Cuomo, Massimiliano Rak, Umberto Villano: Process-oriented
Discrete-event Simulation in Java with Continuations - Quantitative
Performance Evaluation. In Proceedings of the 2nd International

Conference on Simulation and Modeling Methodologies, Technologies
and Applications, pp. 87-96, 2012, Rome, Italy, 28 - 31 July, 2012.

[3] H. Schwetman, “Object-Oriented simulation modeling with
C++/CSIM17”, In Proceedings of the 1995 Winter Simulation
Conference, ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D.
Goldsman, pp. 529-533, Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey, December 1995.

[4] J. A. Joines, S. D. Roberts: “Design of object oriented simulations in
C++”, In Proceedings of the 1996 Winter Simulation Conference, ed. J.
Charnes, D. Morrice, D. Brunner, and J. Swain, pp. 65-72, Institute of
Electrical and Electronics Engineers, Piscataway, New Jersey,
December 1996.

[5] J. M. Garrido, “Object-oriented Discrete Event Simulation with Java”.
Kluwer/Plenum, NY, September 2001.

[6] J. A. Miller, Y. Ge, and J. Tao, “Component Based Simulation
Environments: JSIM as a Case Study Using Java Beans”, In Proceedings
of the 1998 Winter Simulation Conference, ed. D. J. Medeiros, E. F.
Watson, J. S. Carson and M. S. Manivannan, pp. 373-381, Institute of
Electrical and Electronics Engineers, Piscataway, New Jersey,
December 1998.

[7] P. L’Ecuyer, L. Melian, and J. Vaucher, “SSJ: A framework for
stochastic simulation in Java”, In Proceedings of the 2002 Winter
Simulation Conference, ed. E. Yücesan, C.-H. Chen, J. L. Snowdon, and
J. M. Charnes, Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey, pp. 234–242, December 2002.

[8] R. A. Kilgore, “Silk, Java and Object-Oriented simulation”, Proceedings
of the 2000 Winter Simulation Conference, ed. J. A. Joines, R. R.
Barton, K. Kang, and P. A. Fishwick, pp. 246-252, Institute of Electrical
and Electronics Engineers, Piscataway, New Jersey, December 2000.

[9] M. C. Little, “The JavaSim User's Manual”, Department of Computing
Science, University of Newcastle upon Tyne, 1999.

[10] F. Howell and R. McNab, "simjava: a discrete event simulation package
for Java with applications in computer systems modelling", First
International Conference on Web-based Modelling and Simulation, San
Diego CA, Society for Computer Simulation, January 1998.

[11] K. Helsgaun, “Discrete Event Simulation in Java”, DATALOGISK
SKRIFTER (writings on computer science), Roskilde University, 2000.

[12] B. Page, T. Lechler and S. Claassen, “Objektorientierte Simulation in
Java mitdem Framework DESMO-J” (“Object-Oriented Simulation in
Java with the Framework DESMO-J”, in German). Libri Book on
Demand, Hamburg, 2000. University of Hamburg, Faculty of
Informatics.

[13] A. Buss, “Component Based Simulation Modeling with SimKit”, In
Proceedings of the 2002 Winter Simulation Conference, ed. E. Yücesan,
C.-H. Chen, J. L. Snowdon, and J. M. Charnes, Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey, pp. 243-249, December
2002.

[14] Iulia Dumitru, Ioana Fagarasan, S. St. Iliescu, Grigore Stamatescu,
Nicoleta Arghira, Veronica Barbulea, A Modular Process Simulator with
PLC, In Proceedings of the 9th WSEAS International Conference on
SIMULATION, MODELLING AND OPTIMIZATION (SMO ‘09), pp.
391-395, Budapest Tech, Hungary, September 3-5, 2009.

[15] P. L’ecuyer, “Uniform Random Number Generator”, In Proceedings of
the 1998 Winter Simulation Conference, ed. D. J. Medeiros, E. F.
Watson, J. S. Carson, and M. S. Manivannan, pp. 97-104, Institute of
Electrical and Electronics Engineers, Piscataway, New Jersey,
December 1998.

[16] P. L’ecuyer, F. Panneton, “Fast Random Number Generators Based on
Linear Recurrences Modulo 2: Overview and Comparison”, In
Proceedings of the 2005 Winter Simulation Conference, ed. M. E. Kuhl,
N. M. Steiger, F. B. Armstrong, and J. A. Joines, pp. 110-119, Institute
of Electrical and Electronics Engineers, Piscataway, New Jersey,
December 2005.

[17] P. L’ecuyer, “Good parameters and implementations for combined
multiple recursive random number generators”. Operations Research,
vol. 47(1), pp 159–164, 1999.

[18] C. D. Pegden, R. E. Shannon, and R. P. Sadowski, Introduction to
Simulation Using SIMAN. New York McGraw-Hill Inc., 1990.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION
DOI: 10.46300/9102.2022.16.6 Volume 16, 2022

E-ISSN: 1998-0159 36

