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Abstract—In this paper, we introduce the development 

methodology of a reliable centralized control applied to a 

synchronous permanent magnet machine. The proposed system 

is nonlinear, we linearize around a point of application. The 

resulting model will then be used to reproduce the dynamic 

behavior of the machine for a reliable control. The controller is 

based on the standard h infinite to increase performance, reduce 

measurement noise, and to tolerate the outage of certain sensors. 

To illustrate the results, we made a comparison between a 

standard state feedback control and reliable h infinite robust 

control. The simulation results shows, that the system in case of 

technical placements poles loses classic performance in the 

presence of an outage, that the reliable centralized robust control 

remain satisfactory performance even in the presence of outage. 

 

Keywords— Reliable control, H infinite, Equation of Riccati, 

linear system, state feedback control, centralized control, reliable 

centralized control.   

I.  INTRODUCTION  
In the presence of disturbances, the technique of classical 

state feedback control of linear systems appears insufficient 
and gives mediocre performance. But in the case of sensor 
outage it‟s clearly that the system loses its performances, 
researches propose adaptive algorithms. 

The main advantage of Reliable Centralized Control 
techniques is to generate control laws which allow firstly to 
shape the response of the servo system to give it the desired 
behavior and secondly maintain this behavior to the vagaries 
and fluctuations that affect even in the presence of sensor 
outage. 

In this paper we investigate a control strategy which is to 
develop centralized controller based on the synthesis of H 
infinite and having the structure of a state observer estimates 
increased disturbances and commands generated by other 
controllers so to ensure a stable transfer between magnitudes 
and bounded external disturbances regulated and the acting on 
the whole system. The method is therefore primarily to solve a 
Riccati equation. We conclude by validating the results using 
a simulation that compares the standard state feedback 
controller and the reliable centralized control. 

. 

II. DESIGN OF RELIABLE CENTRALIZED CONTROL [1] 
[10][13] 

 
In this section we introduce the problem of designing a 

centralized controller that is reliable despite possible sensor 
outages. The outages will be restricted of occur within a 

preselected subset of available measurements .The controllers 
developed will guarantee closed-loop stability and prescribed 

H∞-norm bound, regardless of admissible sensor failures. 
Consider first the design of a controller that can tolerate 

the outage of certain sensors. Let   {             } 
correspond to a selected subset of sensors susceptible to 
outages. Introduce the decomposition  

        ̅                                                                   (1) 
Where    denotes the measurement matrix associated with 

 , and   ̅ denotes the measurement matrix associated with the 
complementary subset of measurements .to explain,   ̅ is 
formed from C by putting zeros out rows corresponding to 
susceptible sensors .Let     correspond to a particular 
subset of the susceptible sensors that actually experience an 
outage, and let   ̅    denote the transfers-function matrix of 
the resulting closed-loop system. We can adopt the notation        

      

       ̅                                                                          (2) 
Where    and   ̅   have meaning analogous to those of 

    and   ̅  in (1).Since      ,  
      

   . Also, 
decompose the observer gain as   
       ̅                                                                          (3) 

So that               ̅  ̅                                        (4) 
(That is,   ̅ has zero columns corresponding to sensors 

which have actually failed) Then the following result hold. 
THEOREM4.1: with all assumptions and the design 

otherwise as in corollary 2.4[1], assume     and     
satisfy the ARE‟s 
           

 

                
           (5)     

         

       
 

           ̅
   ̅                         (6) 

Respectively. Then, for sensor outages corresponding to 
any    , the closed-loop system is stable, and‖  ̅‖   . 

Remarks: 
1) with all sensors operational, which corresponds to 
       ̅         is the, nominal closed-loop transfer-
function matrix from    to z, where  

                          (
  

 
)  ,   (

  
 

) 
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Theorem 4.1 covers this case automatically, since       
 . If sensors corresponding to a nonempty subset      fail, 
then    ̅    is the resulting transfer-function matrix from     ̅ 
to z, where 

   ̅  (
  

  ̅
) 

With    ̅ containing only those components of measurement 
noise associated with operational sensors, thus, for the present 
reliability formulation, a sensor failure effectively eliminates 
the associated sensor noise. 
2) The design equation (5) and (6) arise from replacing H in 
the description of the plant by the augmented matrix. 

   (
 

   
)                                                                           (7) 

And changing the basic design equations accordingly .This 
corresponds to choosing the matrix    in (2) as  

     (  
    
  

)    

Proof: In view of remark 2) above, if (5) and (6) have 
appropriate solution, then corollary 2.4[1] guarantees that  
     satisfies. 
  

         
 

        
       

                             (8) 
And that (       ) is a detectable pair, where the augmented 
closed-loop system is described by the matrices 

   (
   
       

) ,    (
  
  

)   

      (
   
  

)                                                                  (9) 
The actual closed-loop system with no sensor outages is 

described by the matrices  

   (
   
       

) ,    (
  
  

)   

    (
  
  

)                                                                     (10) 
For sensor outages corresponding to    , the controller 

effectively becomes  
 ̇                   ̅                                    (11) 
                                                                                     (12) 

The controller dynamic structure is not affected by sensor 
outages; only the controller input structure is effectively 
changed. Given (11) and (12), the closed-loop system matrices 
become. 

   ̅  (
   

  ̅  ̅      
) ,    ̅  (

  
   ̅

)   

    (
  
  

)                                             (13) 
It follows that 

      ̅  (
 
  

)          ̅                            (14a) 

    
  (

    
   ̅  ̅

 )  (
 
  

)     
      ̅   ̅

      

   
                                                                                      (14b) 

   
       

      (  
    
  

)                               (14c) 

 
Use (14) in (8) and the fact,   

      
    to obtain  

   ̅
         ̅  

 

  
     ̅   ̅

       
      

     
    

            

 
 

  
        

       (  
 

 
)      

     
    

            

 
 

  
        

         
    

  (
 

 
          

 ) (
 

 
   
        )

   
Hence, provided     ̅     is a detectable pair, see lemma 

2.1 [1] guarantees that    ̅ is Hurwitz, and that  ̅    
         ̅      ̅, the transfer-function matrix from    ̅ to 
z, satisfies‖  ̅‖   . The detectability proof is routine: if 
      

       
     satisfies    ̅     and        , then   

       , And       , with (A,H) assumed a detectable 
pair, Therefore, either          or     . If     , then                 
       ̅     and    =0 gives       .Since 
        is a detectable pair,         Q.E.D  
 

III. MODELING OF THE PMSM 
 

The machine can be represented by the shape of state space 
and can be written [2], [3]: 

{
         ̇

                
 

With: 
 ̇  

 

  
    

 

  
   

  

  
     

  

  
  

 ̇  
 

  
    

 

  
   

  

  
     

  

  
   

  

  
  

 ̇  
 

  
  

 

 
[     (     )    ]  

 

 
   

The system is rewritten as desired linearization [11], 
[12][13]: 

  [

  

  

  

]  [
  
  
 

]   ;    *
  

  
+ 

     [

     
     

     
]  [

           

                

                

] 

With:  

    
 

  
 ;     

  

  
    

     
 

  
  ;      

  

  
  ;     

  

  
   

     
 

 
  ;     

 

 
(     )  ;     

 

 
    

The following parameters [2] of the PMSM are:  

Ld=11mH; Lq=11mH; ϕf=0.18wb; J=6e-4Kg.m2 

F=1e-4N.m.s/rad; R=1.2𝞨; P=3 

This model is linearized about an operating point: 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION 
DOI: 10.46300/9102.2022.16.5 Volume 16, 2022

E-ISSN: 1998-0159 24



   [

   

   
  

]  ;    *
   

   
+ 

We can correspond those matrixes to our system: 

 ̇             
                   
             *

  
 

+  
Which gives us: 
 

 

[
 
 
 
 
 
  

 

  

  

  

   

  

  

    

 
  

  

         
  

  

    
   

  

 

 
 (     )  

 

 
    (     )     

 

 ]
 
 
 
 
 
 

 

  [
     
     

  

]  ;    *
   
   

+   

   [   ] ;    [

 
 

 
 

 

]    

Finally, the operating point and the vector control selected are: 

[

   

   
  

]  [
 
 
  

]  ;  *
   

   
+  *

 
  

+ 

 

IV. APPLICATION OF CONTROLS 
 

A. Application of state feedback control: 

The choice of the gain matrix K based on the location of 
the poles that wants to impose the system, we take the 
following clusters [2], [9]:  

[-10,-0.125,-4000] 
To obtain the gain matrix K: 
 

K=*                   
                     

+ 

B. Application of H∞ Algorithm: 

By applying the algorithm previously mentioned we come 
to find the values of X which we calculate the value of gains K, 
Kd, and Li which are the synthesis parameters of the law. 

We have: 
        ;    

 

   
   

L is obtained by resolving the Riccati equation which 
returns Y. 

                 
 

 

 

Without an outage we have: 

 

  *
                        
                    

+ 

 
             [                   ]    

 

             [
                 
                 
                 

] 

 
With an outage on speed sensor we have: 
 

  *
                        
                    

+ 

 
             [                   ]    

 

             [
                 
                 
                 

] 

 
With reliable we have: 
 

  *
                        
                      

+ 

 
             [                 ] 

 

             [
                 
                 
                 

] 

 
Between the three cases, the value of the L matrix doesn't 

change, while for Kd it varies weakly, the only big changeover 
is to the level of the K matrix 

 

V. SIMULATION 
 

 
FigV.1: PMSM with state feedback controller 
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FigV.2:speed with state feedback without noise  

 
With absence of noise the speed of the PMSM can reach 

the reference value with a static error which can be removed 
with a pre-compensator gain. 

 

 
FigV.3:speed with state feedback with 0.01 noise 

power without failure  
 
In the presence of noise the PMSM with state feedback 

controller lose its performance, and become unstable. 
 

 
FigV.4 PMSM with state feedback controller with 

failure on speed sensor 
 

 
FigV.5:speed with state feedback with 0.01 noise 

power with failure on speed sensor 
 
With failure on the speed sensor the PMSM loses 

definitely its performances. 
 

 
FigV.6:PMSM with H∞ controller 

 

 

 
FigV.7:speed with standard H∞ controller without 

noise 
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

40

45

50

time(s)

sp
ee

d(
ra

d/
s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

time(s)

sp
ee

d(
ra

d/
s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

120

140

times(s)

sp
ee

d(
ra

d/
s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

times(s)

sp
ee

d(
ra

d/
s)

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION 
DOI: 10.46300/9102.2022.16.5 Volume 16, 2022

E-ISSN: 1998-0159 26



 
FigV.8:speed with H∞ controller with 0.01 noise 

power without failure 
 
The H∞ controller minimizes the effect of the noise on the 

speed of the PMSM. 
 
 

 
FigV.9: PMSM with H∞ controller with  failure on 

speed sensor 
 

 
FigV.10: speed with H∞ controller whit 0.01 noise 

power with failure on speed sensor 
 

 
figV.11:comparaison of speed with H∞ controller 

with 0.01 noise power(failure & safe) 
 
In the case of an outage on speed sensor the performances 

deteriorate but not clearly (in red safe case, in blue with 
failure) 

 

 
figV.11:comparaison of speed with H∞ controller 
and standard state feedback with 0.01 noise power 

with failure on speed sensor 
 

VI. CONCLUSION 
The works presented in this paper have been devoted to the 

study of the reliable Centralized Control applying to a PMSM. 
A comparison of the changes in engine speed when 

applying a classical control state feedback and H ∞ centralized 
control. 

The controller H∞ centralized is known for its hardiness, 
so it maintains the steady system even in the presence of an 
outage on sensor. 
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