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Abstract—We introduce the concepts statistical
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fuzzy numbers in a fuzzy valued metric space. Then
we obtain some inclusion relations between the sets
of limit points, statistical limit points and statistical
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. INTRODUCTION AND BACKGROUND

VER the past few years the theory of convergence of a
Osequence of fuzzy numbers has been studied by many

authors [1-3,8,11,19]. The first steps towards constructing
such convergence theories go back to Matloka's [13] and
Kaleva's [12] works. To this end, they used the supremum
metric that gives a real (crisp) value for the distance between
two fuzzy numbers. On the other hand, via positive fuzzy
numbers, it is also possible to define a fuzzy (non-crisp)
distance between two fuzzy numbers (as is exemplified by
Guangquan [9]), because it is more natural that the distance
between two fuzzy numbers is a fuzzy number rather than this
distance is a real number.

In this paper, we introduce the concept of statistical
convergence of a sequence of fuzzy numbers in a fuzzy metric
space which defined by Guangquan [9,10]. Then we compare
this definition with the definition of statistical convergence
with respect to the supremum metric. We note that this
convergence should not be perceived as a generalization of
ordinary statistical convergence (see Example 1). Moreover
we define the concepts statistical cluster and statistical limit
points of a sequence of fuzzy numbers in this fuzzy valued
metric space. Finally we obtain some inclusion relations
between the sets of limit points, statistical limit points and
statistical cluster points for a sequence of fuzzy numbers.
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Now we recall some definitions and notations that will be used
frequently (see [4-7,10,12,13-18] for more details).

Given an interval A, we denote its endpoints by A and A

We denote by D the set of all closed intervals on the real line
R. That is,

D ={AcR: A=[AA]}
For A,B e D define

A<B iff A<B and A<B,
d(AB):= max(|/_x—§|,‘7x—6‘).

It is easy to see that d defines a metric (Hausdorff metric) on
D and (D,d) is a complete metric space. Also “<” is a

partial order on D.

A fuzzy number is a function X from R to [0,1],
satisfying
e X isnormal, i.e., there exists x, e R such that X(x;)=1;
e X is fuzzy convex, ie, for any x,yeR and
A €[0,1], X (Ax+ ([L—A)y) = min{X (x), X (V)};
e X isupper semi-continuous;
o the closure of the set {xeR : X(x)>0}, denoted by X°,

is compact.
These properties imply that for each «<(0,1], the

a—level set X% ={xeR: X(X)Za}:[la,ya} is a
nonempty compact convex subset of R, as the support
X% X%=lim _, X%is
a—0
numbers by F(R). Note that the function a, defined by

a(x) = {1 ifx=a

0 ,otherwise’

We denote the set of all fuzzy

where aeR, is a fuzzy number. By the decomposition
theorem of fuzzy sets, we have

X e x]
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for every X eF(R), where each Z[xa %] denotes the

characteristic function of the subinterval [5“,71}

Now we recall the partial order relation on the set of fuzzy
numbers. For X,Y e F(R), we write X <Y, if for every

a €[0,1], the inequality

X*<y“?
holds. We write X <Y, if X <Y,and there exists an

o, €[0,1] such that

—a

X% <Y% or X <Y

If X<Y and Y <X, then X =Y. Two fuzzy numbers X
and Y are said to be incomparable and denoted by X #VY, if
neither X <Y nor Y <X holds. When X>Y or X #Y,

then we can write X Y.

Now let us briefly review the operations of summation and
subtraction on the set of fuzzy numbers. For X,Y,Z e F(R),
the fuzzy number Z is called the sum of X and Y, and we

write Z =X +Y, if Z“:[;“,Za} =X%+Y?* for every

a <[0,1]. Similarly,  we  write Z=X-Y, if

yAd =[;“,Z“} =X%-Y“ forevery o <[0,1].
We define the set of positive fuzzy numbers by

F*(R) :={x eF(R): X >0,and X >o}.

The map dy, : F(R)xF(R)— R* U{0} defined as

dy (X,Y) = sup d(X“,Y“)
ael0,1]

is called the supremum metric on F(R).

A sequence X ={X,} of fuzzy numbers is said to be
convergent to the fuzzy number X, , written as lim X, = X,
if for every &> 0 there exists a positive integer ny =N, (s)
such that

dy (X,, Xg)<e foreveryn>n,.

A fuzzy number A is called a limit point of the sequence
X ={X,} of fuzzy numbers provided that there is a
subsequence of X that converges to A. We will denote the
set of all limit points of X ={X,} by L.

Guangquan [9] introduced the concept of fuzzy distance
between two fuzzy numbers as in Definition 1, and thus
presented a concrete fuzzy metric in (1.1), which is very
similar to an ordinary metric.
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Definition 1. A map p : F(R)xF(R)— F(R) is called a
fuzzy metric on F(R) provided that the conditions

i) p(X,Y)=0,,
i) p(X,Y)=0, ifandonlyif X =Y ,
i) p(X,Y)=p(v,X)

iv) p(X,Y)< p(X,Z2)+p(Z,Y) are
X,Y,Z eF(R)

(
(
(
(i satisfied  for  all

If p isa fuzzy metric on the set of fuzzy numbers, then we
call the triple (R,F(R),p) a fuzzy metric space. Guangquan

[9] presented an example of a fuzzy metric space via the
function dg defined by

ae0.] y?| sup d(xt )

tefar, 1]

dg(X,Y) = sup aZUX ” } (1.1)

Here the map d satisfies the conditions (i)-(iv) in Definition
1.

Remark 1. Let
Br = {K(X,P): X eF(R), PeF"(R)}<P(F(R))
where  P(F(R)) is the F(R) and
K(X,P) =1z €F(R) : dg(X,Z)<P, PcF*(R)} Then the
set B forms a basis of a natural topology on F(R), denoted
by 7. Thus the pair (F(R), 7 ) is a topological space.

power set of

Now we investigate the properties of the convergence of a
sequence in this topological space. Since this convergence is
in the topology 7 , we will denote it by 7z — convergence.

Definition 2 (7 —convergence). Let X ={X,}c F(R)
and X, eF(R). Then {X,} is 7y —convergentto X, and we
denote this by

7 —lim X, = Xy 0r{X,}— X (n—> ),

provided that for any PeF'(R) there exists an

no =No(P)e N such that
dg(X,, Xo)<P asn>n,.
Definition 3 (zp —limit point). A fuzzy number A is a
7 — limit point of the sequence X ={X,} of fuzzy numbers

provided that there is a subsequence of X that
7g —converges to 4. We denote the set of all 7 —limit

points of X ={X,} by LY .

Let K be a subset of the set N of positive integers and
let us denote the set {k e K : k<n} by K,. Then the natural
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[Kal
n

density of K is defined by &(K):=lim =2, where |K,|
n—oo

denotes the number of elements in K. Clearly, a finite subset
has natural density zero and we have &(K®)=1-5(K)
whenever  §(K) exists, where K¢ =N\K is the
complement of K <N. If K; cK,, then §(K,)<5(K,). In

addition, §(K) =0 means that E(K):zlimsupm>0.

n
nN—o0

A sequence X ={X,} of fuzzy numbers is said to be
statistically convergent to the fuzzy number X,, written as
st—lim X, = X, if the set

{neN :dy(X,, Xy)=¢}
has natural density zero for every ¢ > 0.
Definition 4 (Nonthin subsequence). If {X,;} is a
subsequence of X ={X,} and K ={n(j)eN : je N} then
we abbreviate {X;} by {X}x which in case 5({K})=0 is

called a subsequence of density zero or thin subsequence. On
the other hand, {X}« is a nonthin subsequence of X if K

does not have density zero.

Definition 5 (Statistical limit point). The fuzzy number v is
called statistical limit point of the sequence X ={X,} of fuzzy

numbers provided that there is a nonthin subsequence of X
that converges to v. Let A, denote the set of statistical limit

points of the sequence X.

Definition 6 (Statistical cluster point). The fuzzy number u
is called statistical cluster point of the sequence X ={X,} of
fuzzy numbers provided that

SneN : dy (X,,u)<eh)>0

for every ¢>0. Let T'y denote the set of statistical cluster
point of the sequence X.

Il. 7 —STATISTICAL CONVERGENCE

Definition 7 ( 7y —statistical convergence). Let X ={X,}
be a sequence of fuzzy numbers and X, be a fuzzy number.
The sequence X is said to be z —statistically convergent to
X , we denote this by

7 -st-lim X, = X,
provided that for any P e F*(R), the set
neN : dg(X,,X,) %P}

has natural density zero.
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It is clear that if a sequence is 7y —convergent then it is
7 —statistically convergent to the same fuzzy number. But
the converse of this claim does not hold in general.

Example 1. It is obvious that the sequence X ={X,}
defined by

0 i X € (—oo,n=1) U (n+1,0) )
. Jfn=k
x—(n-1) ,if xe[n-1,n] ‘
X, (X)=<—x+(n+1) ,otherwise (keN)
S 1 S 1
I-q ifxe [O’l_+ ] , otherwise
0 , otherwise
is 7y —statistically convergent to the fuzzy number
1-x ,if xe[0,1]
Xo(X) = L
0 , otherwise
On the other hand, since the set {ne N : dg(X,,X,)* P} has

infinitely many elements for every P e F+(R), we say that this
sequence is not 7 —convergent.

Theorem 1. If a sequence X ={X,} of fuzzy numbers
7g —statistically convergent to the fuzzy number X, , then

this sequence statistically converges to the same fuzzy number
X Wwith respect to supremum metric d,, .

Proof. Assume zg-st-limX,=X,. Then the set
{neN : dg(X,, Xo)# &) has natural density zero for every

& €F*(R). Fix &>0. Then we have

olineN : y £é& (=0
[ sup d(xg,xé)}

tela,1]

Xnt=Xol,

for every « €[0,1]. Itis clear that the inclusion

neN : y

L&
sup d(X,‘q,X}))} !

Is[a,l]

;{neN : sup d(X;,X(‘))zS}
te[a,l]

holds for every « €[0,1], i.e., we have

2.1)

X=Xt

tefer,1]

neN : e
Z{ . sup d(X,‘],X},)} !

S{heN : dy(X,, Xo)> el
The inclusion (2.1) say that
S(neN : dy (X, Xg)2e})=0
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because left hand side of the inclusion (2.1) has natural density

has no natural density zero for every PeF*(R). Let I'{f
zero.

denote the set of all z -statistical cluster points of the
The converse of this theorem does not valid in general as sequence X .

can be seen by the following example.
) Now we give an illustrative example.
Example 2. Define the sequence X ={X,} by
Example 3. Define the sequence X ={X,} by

x—(2+%) ,ifx:s(2+%,3+%) _ ) o
(4+L)_x if xe[3+1,4+1) Jifnzk - if xe[0,1+ 1] ,if nis an even number
X (x):=10 " otherwise "M (keN) 0 , otherwise and n=k? (k e N)
e , nE-x)A - 1 if nisan even number
C01if xe[8,9+1] herwi e T xeB9+ll .
0 otherwise otnenwise 0 ; Otherwise andn =k* (keN)
’ X (X) = x—(2+%) ,ifXE(2+%,3+%) i dd number
and define the fuzzy number X, by (4+1 -x ,ifxe[3+1,4+1) AT nisan 02 number
0 " therwi noon andn=k* (ke N)
x-2 ,if xe(2,3) - Oenwise o
Xo(x) =14-x ,if xe[3,4). x—(5+%) Jif xe[5+%,6+1]| ,ifnisan ogd number
0 otherwise 0 , otherwise andn=k* (k e N)
Define
Then st-1im X, = X,. But 7 -st-lim X,, does not exist. Now 1-x if xe[0.]
e show this claim. Define X) = ' -
" e ! I #o(X) {0 , otherwise
0 , X € (—o0,0]U[2,0) .
P(x) ==4x ,xe (0,1 X-2 ,fer(Z,B)
2-x otherwise vo(X)=<4-x ,if xe[3,4),
0 , otherwise
Then we have
x=5 ,if xe[5,6]
dg(X,, Xg)= sup ay X) = :
G( " O) ael0,1] {xnl—xg, sup d(X;,X}))} 70(X) {0 , otherwise
T teall
= SUp o[y 1] and
acoy] _
_J9-x ,if xe[8,9]
if  n«k?  (keN). Otherwise  we  have =10 otherwise |

dg (X, Xo)= S‘fp]al[oi]- Hence we get P +dg(X,,X,) if
ael0,1 "

n=k?, otherwise dg(X,, X,)<P. Consequently we have
TF -St- Iim Xn * Xo.

I1l. 7 -STATISTICAL LIMIT POINTS

Definition 8 (z -statistical limit point). Let X ={X,} bea
sequence of fuzzy numbers and v be a fuzzy number. The
number v is called zp -statistical limit point of the sequence

X if there is a nonthin subsequence of X that z -converges
to v. We denote the set of all 7 -statistical limit points of the
sequence X by AY.

Definition 9 (z -statistical cluster point). Let X ={X,} be
a sequence of fuzzy numbers and x be a fuzzy number. The
number u is called 7 -statistical cluster point of the
sequence X if the set

{neN : dg(X,, u)<P}

E-ISSN: 2313-0512

Hence we obtain

Lx = {#0'V017O'§0}'

Ay =Ty = {ﬂo:Vo}l

LY = {#olfo}'

A% =Tx ={uo}h
Since 7 -convergence implies the convergence with respect
to supremum metric dy, , it is clear that LY <Ly and
A < Ay. Now we prove the relations between the sets of

statistical cluster points:

Theorem 2. We have T'yF T’y for a sequence X ={X.}
of fuzzy numbers.

Proof. Take u eIy . By definition, we get
s({neN : dg(X,,u)<P})=0

for every P e F*(R). Fix &> 0. Then we can write
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S({neN : dg(X,, 1)<&})#0,

since & € F*(R). From definition of the metric dg, we have

o {neN :

for every « €[0,1], i.e., we get

sup d(Xrﬁ,yt)

<g'=¢;|#0
tela,1] -

S(IneN : dy (X, ux)<z)=0

by the definition of supremum metric d,,. Since the number
& is arbitrary, the proof of theorem is completed.

Theorem 3. We have I'yF < LY for a sequence X ={X,}
of fuzzy numbers.

Proof. Take pelyF . Fix PeF*(R) Then we have
S(in(i)eN : dg(Xy . 1)< Pj)=0. Define {X}, by a
nonthin subsequence of X such that

K=K(P)={neN : dg(X,,u)<P}

and &(K)#0. Then there exists a subset Lc K such that

lim X, =u, where the set L has infinitely many

TF =
nelL, no>wo

elements. Therefore we get n e LY.

The converse of this theorem does not hold in general as
can be seen in Example 3.

Theorem 4. We have A cT'y" for a sequence X ={X}
of fuzzy numbers.

Proof. Assume veAy. Then there exists a set

K :={n(j)eN : jeN} suchthat §(K)=1>0 and
7 - lim X ;) = 1. Fix PeF*(R) Hence the inclusion
]

fneN : dg(X,,u)< P}Q{n(j)eN : dG(Xn(j),,u)< P}

=K () eN : de(Xngy )= PIofnid eN : dg(Xogy. 2)# P}

holds. Here the sets {n(j)eN : dG(Xn(j),y)z P} and
{n(j)eN : dG(Xn(j),y)+ P} has finite many elements.
Hence we have

S(heN : dg(X,, u)<P)) zﬁS(K)

Sy en
=1.

Therefore we get s(fne N : dg(X,,u)<P})=0.

de (Xngyy. £)2 PYO() e N & dg (Xnjy ) # P)
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