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Abstract—In this paper we shall deal with the AOQL single 
sampling plans when the remainder of rejected lots is inspected. 
We shall consider two types of AOQL plans - for inspection by 
variables and for inspection by variables and attributes (all items 
from the sample are inspected by variables, remainder of 
rejected lots is inspected by attributes). These plans we shall 
compare with the corresponding Dodge-Romig AOQL plans by 
attributes. We shall report on an algorithm allowing the 
calculation of these plans when the non-central t distribution is 
used for the operating characteristic. The calculation is 
considerably difficult, we shall use an original method and 
software Mathematica. From the results of numerical 
investigations it follows that under the same protection of 
consumer the AOQL plans for inspection by variables are in 
many situations more economical than the corresponding Dodge-
Romig attribute sampling plans (saving of the inspection cost is 
70% in any cases). 

Keywords—Acceptance sampling; AOQL plans; inspection by 
variables; software Mathematica  

 

I. INTRODUCTION  
Under the assumption that each inspected item is classified 

as either good or defective (acceptance sampling by attributes) 
in [1] are considered sampling plans which minimize the mean 
number of items inspected per lot of process average quality 

( ) ( )cnpLnNNIs ,;⋅−−=  (1) 

under the condition 

( ) Lp
ppAOQ =

<< 10
max  (2) 

(AOQL single sampling plans), where N is the number of 
items in the lot (the given parameter), p  is the process 
average fraction defective (the given parameter), Lp  is the 
average outgoing quality limit (the given parameter, denoted 
AOQL), n is the number of items in the sample n( < )N , c is 
the acceptance number (the lot is rejected when the number of 

defective items in the sample is greater than c), ( )pL  is the 
operating characteristic (the probability of accepting a 
submitted lot with fraction defective p – see[2] ), ( )pAOQ  is 
average outgoing quality (the mean fraction defective after 
inspection when the fraction defective before inspection was 
p ).  

Condition (2) protects the consumer against the 
acceptance of a bad lot. The AOQL plans for inspection by 
attributes are in [1] extensively tabulated. 

 

II. AOQL PLANS BY VARIABLES AND ATTRIBUTES 
 The problem to find AOQL plans for inspection by 

variables has been solved in [3] under the following 
assumptions:  

Measurements of a single quality characteristic X are 
independent, identically distributed normal random variables 
with unknown parameters µ and 2σ . For the quality 
characteristic X is given either an upper specification limit U 
(the item is defective if its measurement exceeds U), or a lower 
specification limit L (the item is defective if its measurement is 
smaller than L). It is further assumed that the unknown 
parameter σ  is estimated from the sample standard deviation  
s. 

The inspection procedure is as follows: Draw a random 
sample of n items and compute x  and s.  Accept the lot if 

.or    , k
s

Lxk
s

xU
≥

−
≥

−  
 

(3) 

We have determine the sample size n and the critical value 
k. There are different solutions of this problem. In paper [3] we  
used for determination n and k a similar conditions as Dodge 
and Romig in [1]. 

Now we shall formulate this problem. Let us consider 
AOQL plans for inspection by variables and attributes – all 
items from the sample are inspected by variables, but the 
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remainder of rejected lots is inspected only by attributes. Let 
us denote 

     ∗
sc  - the cost of inspection of one item by attributes, 

     ∗
mc  - the cost of inspection of one item by variables. 

Inspection cost per lot, assuming that the remainder of rejected 
lots is inspected by attributes (the inspection by variables and 
attributes), is ∗⋅ mcn  with probability ( )knpL ,; , and 

** )( sm cnNcn ⋅−+⋅  with probability ).,;(1 knpL−  The mean 
inspection cost per lot of process average quality is therefore 

( ) ( )[ ]knpLcnNcnC smms ,;1−⋅⋅−+⋅= ∗∗  (4) 

Now we shall look for the acceptance plan ( )kn,  minimizing 
the mean inspection cost per lot of process average quality 

msC  under the condition (2). The condition (2) is the same 
one as used for protection the consumer Dodge and Romig in 
[1]. Let us introduce a function 

( ) ( )[ ]knpLnNcnI mms ,;1−⋅−+⋅= , (5) 

where 

./ ∗∗= smm ccc  (6) 

Since 

,∗⋅= smsms cIC  (7) 

both functions msC  and msI  have a minimum for the same 
acceptance plan ( )kn, . Therefore, we shall look for the 
acceptance plan ( )kn,  minimizing (5) instead of (4) under the 
condition (2). 

For these AOQL plans for inspection by variables and 
attributes the new parameter mc  was defined – see (6). This 
parameter must be estimated in each real situation. Usually is 

mc >1. (8) 

Putting formally 1=mc  into (5) ( msI in this case is denoted 

mI ) we obtain 

( ) ( )knpLnNNI m ,;⋅−−= , (9) 

i.e. the mean number of items inspected per lot of process 
average quality, assuming that both the sample and the 
remainder of rejected lots is inspected by variables. 
Consequently the AOQL plans for inspection by variables are 
a special case of the AOQL plans by variables and attributes 
for 1=mc . From (9) is evident that for the determination 
AOQL plans by variables it is not necessary to estimate mc  
( 1=mc  is not real value of this parameter). 

Summary:  
For the given parameters Lp , N, p  and mc  we must 
determine the acceptance plan ( )kn,  for inspection by 

variables and attributes, minimizing msI  under the condition 
(2). 

Solution of this problem is in the paper [3], now we shall 
report on an algorithm allowing the calculation of these plans. 
In the first place we shall solve the equation (2), in the second 
place we shall determine the acceptance plan ( )kn,   

minimizing msI  under the condition (2). For given sample 
size n (and given N, Lp ) we shall look for the critical value  k  
for which holds (2), i.e. (see [3])  

.0)1/()( =−−
N
npkM Ln

 (10) 

Under suitable assumptions solution of the equation (10) 
exists and is unique – see [2]. This solution is considerably 
difficult (explicit formula for k does not exist), we must solve 
(10) two times numerically (in the first step we determine Mx  
as a solution of equation 0)(' =xG , in the second step we 
determine k as a solution (10) – see [3] ).  
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Fig. 1. The function G´(x) for n=60 and k=2,2 
 

 

From  Figure 1 is evident that numerical solution  of equation  
0)(' =xG   depends on good first approximation 0x . In [5] is 

proved that solution Mx  of this equation is between  

.
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Therefore we choose for 0x  following point (numerical 
investigations show that this point is good start value) 

.
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(12) 
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III. AOQL PLANS BY VARIABLES AND ATTRIBUTES – 
NUMERICAL SOLUTION 

 
Analogously as for calculation of the LTPD plans (see [6]) 

we shall use software Mathematica for calculation of the 
AOQL plans for inspection by variables and attributes (see 
[7]). 

Example. Let N=1000, pL =0.0025, p =0.001 and cm =1.8 
(the cost of inspection of one item by variables is higher by 
80% than the cost of inspection of one item by attributes). We 
shall look for the AOQL plan for inspection by variables and 
attributes. Furthermore we shall compare this plan and the 
corresponding Dodge-Romig AOQL plan for inspection by 
attributes. 

Solution.  In the first step we shall determine Mx  as a solution 
of equation 0)(' =xG .  According to (11) and (12) we have 
(G’(x) see [3]) 

In[1]:= << Statistics`ContinuousDistribution` 

In[2]:= ndist = NormalDistribution[0, 1] 

In[3]:= cm = 1.8 

In[4]:= AOQL=0.0025 

In[5]:= pL = 0.0025 

In[6]:= pbar = 0.001 

In[7]:= nbig = 1000 

In[8]:= A[n_, k_] := Sqrt[1/n + k^2/(2n - 2)]; 

G'[x_, n_, k_] := CDF[ndist, (x - k)/A[n, k]] - CDF[ndist, -x]* 

Exp[-((1 - A[n, k]^2) x^2 - 2k x + k^2)/(2A[n, k]^2)]/A[n, k]; 

xr[n_, k_] := k/(1 + A[n, k]); 

xa[n_, k_] := (k + A[n, k]*Sqrt[k^2 - 2(1 - A[n, k]^2)* 

Log[A[n, k]]])/(1 - A[n, k]^2); 

x0[n_, k_] := ((100 + n)*xr[n, k] + n*xa[n, k])/(2n + 100); 

FR[n_, k_] := FindRoot[G'[x, n, k] == 0, {x, x0[n, k]}]; 

xM[n_, k_] := x /. FR[n, k]; 

 

Using Newton's method for solution (10) (Mn(k), Mn'(k) see 
[3]) with start point o=1.6 we have 

c[n_, k_] := -(CDF[ndist, -xM[n, k]]*CDF[ndist, (xM[n, k] -k)/ 
                                A[n, k]] – pL/(1 - n/nbig))/ 
                               (-CDF[ndist, -xM[n,k]]*(1/n + k xM[n, k]/ 

(2n - 2))*Exp[-(xM[n, k] - k)^2/(2A[n, k]^2)]/ 
(A[n, k]^3*Sqrt[2Pi])); 

o = 1.6; 
 

 fRecAux[n_,i_]:= fRecAux[n,i]=fRecAux[n,i-1]+c[n,fRecAux[n,i-1]]; 
fRecAux[n_,0]=o; 

 
k[n_]:=fRecAux[n,7]; 

The acceptance plan ( )kn,   minimizing msI (see (5))  under 
the condition (2) is: 

a[n_] := CDF[ndist, (k[n] - Quantile[ndist, 1 - pbar])/Sqrt[1/n +     
                        k[n]^2/(2n - 2)]]; 

 
          Ims[n_] := n cm + (nbig - n)*a[n]; 
 

FMinSearch[nl_,nu_]:= nl /; nl == nu; 
FMinSearch[nl_,nu_]:= FMinSearch[nl, nl+Floor[(nu-nl)/2]] /; 
Ims[nl+Floor[(nu-nl)/2]]<= Ims[nl+Floor[(nu-nl)/2]+1]; 
FMinSearch[nl_,nu_]:= FMinSearch[nl+Floor[(nu-nl)/2]+1, nu]; 

 
 n=FMinSearch[7, nbig/2]; 

 

Correction for non-central t distribution (the operating 
characteristic is e.g. in [4]): 

In[25]:= lambda[p_]:=Quantile[ndist,1-p]*Sqrt[n] 

In[26]:= nonctdist[p_]:=NoncentralTDistribution[n-1,lambda[p]] 

In[27]:= L1[p_]:=1-CDF[nonctdist[p], k[n]*Sqrt[n]] 

In[28]:= AOQ[p_]:=(1-n/nbig)*p*L1[p] 

In[29]:= d=0.00001 

In[30]:= fMSmodq[pl_,pu_]:=pl /; pl==pu 

         fMsmodq[pl_,pu_]:=fMSmodq[pl,pl+Floor[(pu-pl)/(2d)]*d] /; 

         -AOQ[pl+Floor[(pu-pl)/(2d)]*d] <= -AOQ[pl+Floor[(pu-pl)/(2d)*d]+d] 

         fMSmodq[pl_,pu_]:=fMSmodq[pl+Floor[(pu-pl)/(2d)]*d+d, pu] 

In[33]:= pLtrue := AOQ[fMSmodq[0.00001, 0.01]] 

In[34]:= pcpL = 0.00000001 

In[35]:= samplan := {n, k[n]} /; (konst=pLtrue; Abs[konst – AOQL] < pcpL); 

         Samplan := (pL=pL+AOQL-konst; Clear[fRecAux]; fRecAux[n_,i_] := 

         fRecAux[n,i] = fRecAux[n,i-1]+ c[n,fRecAux[n,i-1]];          

         fRecAux[n_,0]=o; samplan) 

In[37]:= samplan 

Out[37]= {49, 2.57617} 

 

The AOQL plan for inspection by variables  and  attributes  
is   n = 49,   k = 2.57617. 

      The corresponding AOQL plan for inspection by attributes 
we find in [1]. For given parameters  N,  pL  and p we have   
n2 = 130, c = 0. For the comparison these two plans from an 
economical point of view we use parameter e defined by 
relation 

.100                              ⋅=
s

ms

I
Ie    
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The AOQL plan for inspection by variables and attributes is 
more economical than the corresponding Dodge-Romig plan 
when 

                                          e < .100  
  (22) 

The Mathematica gives 

In[38] := n = 49 

In[39] := k = 2.57617 

In[40] := n2 = 130 

In[41] := c = 0 

In[42] := L1[p_]:= 1 – CDF[nonctdist[p], k*Sqrt[n]] 

In[43] := L2[p_]:= Sum[Binomial[nbig*p, i]* 

          Binomial[nbig - nbig*p, n2 - i]/Binomial[nbig, n2],{i, 0, c}]) 

In[44] := e = 100*(n*cm+(nbig-n)*(1-L1[pbar]))/(nbig-(nbig-n2)*L2[pbar]) 

Out[44]:= 52.2008 

 

Since e = 52.2008%, using the AOQL plan for inspection  
by variables and attributes  (49, 2.57617) it can be expected 
approximately 48% saving of the inspection cost in 
comparison with the corresponding Dodge-Romig plan     
(130, 0). 

Further we compare the operating characteristics of these 
plans: 

In[45]:= Table[{p, N[L1[p], 6], N[L2[p], 6]}, {p, 0.001, 0.031, 0.002}] 

In[46]:= TableForm[%] 

Out[46]//TableForm=  

                  0.001   0.959306      0.87 
                  0.003   0.734422      0.658207 
                  0.005   0.522047      0.497674 
                  0.007   0.365862      0.376067 
                  0.009   0.256813      0.284003 
                  0.011   0.181453      0.214346 
                  0.013   0.129244      0.161675 
                  0.015   0.0928235    0.121872 
                  0.017   0.0672038    0.0918112 
                  0.019   0.049026      0.0691225 
                  0.021   0.0360195    0.0520083 
                  0.023   0.0266387    0.039107 
                  0.025   0.019822      0.0293876 
                     0.027   0.0148338     0.0220699 
                  0.029   0.0111597    0.0165638 
                  0.031   0.00843709  0.0124235 

 

For example we get  L1 ( p ) = L1 (0.001) = 0.959306, i.e. 
the producer's risk for the AOQL plan for inspection by 
variables  and  attributes  is  therefore  approximately   =α 1 − 
L1 ( p )=0.04. 

The producer's risk for the corresponding Dodge-Romig 
plan is =α 1 − L2 ( p )=1− 0.87=0.13. 

Finally graphic comparison of the operating characteristics 
of these plans (see Figure 2): 

 
In[47]:= oc1 = Plot[L1[p], {p, 0, 0.025}, AspectRatio -> 0.9,  

         AxesLabel -> {"p", "L(p)"}, PlotStyle -> Thickness[0.0045]] 

In[48]:= oc2 = ListPlot[Table[{p, L2[p]}, {p, 0, 0.025, 0.0003}]] 

In[49]:= Show[oc1, oc2] 

 

 
Fig. 2.  OC curves for the AOQL sampling plans  

for inspection by variables and attributes  (49, 2.57617)  __________ 

                  for inspection by attributes  (130, 0)  ......... 
 

CONCLUSION 
From these results it follows that the AOQL plan for 

inspection by variables and attributes is more economical than 
the corresponding Dodge-Romig AOQL attribute sampling 
plan (48% saving of the inspection cost). Furthermore the OC 
curve for the AOQL plan by variables and attributes is better 
than corresponding OC curve for the AOQL plan by attributes - 
see Figure 2 (for example the producer's risk for the AOQL 
plan by variables and attributes =α 0.04 is less than for the 
corresponding Dodge-Romig plan =α 0.13). 
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