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Abstract - Researchers from multiple 

disciplines have tried to understand the 

mechanism of stock market crashes. 

Precursory patterns before crashes 

agree with various empirical studies 

published by econophysicists, namely 

the prolific work of Didier Sornette. We 

intend to add more empirical evidence 

of synchronization of trading and 

demonstrate the prospect of predicting 

stock market crashes by analyzing 

clusters’ dynamics in the period of 

bubble build-up leading to a crash. We 

apply the Potential-based Hierarchical 

Agglomerative (PHA) Method, the 

Backbone Extraction Method, and the 

Dot Matrix Plot on S&P500 companies 

daily returns. Our innovative approach 

is proposed in this paper, empirical 

results and discussion presented in 

another publication.  
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I. INTRODUCTION 

The 2008 Global Financial Crisis is 
considered by many researchers to have 
been the worst stock market crash since 
the Wall Street Crash of 1929. Both of 
these two major crashes in stock market 
history have been accompanied by 
financial crises, such as the Great 

Depression, which have drawn 
researchers’ attention from the area of 
finance, economics, psychology, complex 
networks, or even physics to study the 
mechanism or causes for the financial 
crises.  
Back to the early 1990s, White (1990) 
compared one of the major crashes, the 
Wall Street Crash of 1929, with the 1987 
Black Monday Crash. White has shown 
the high similarity of stock market indices 
between the 1929 crash and the 1987 
crash, which indicates that crashes in the 
20th century might have already shown a 
similar building-up mechanism (White, 
1990). At that time, researchers were still 
concentrating on the policy makers whom 
they thought should be accused of causing 
the Great Depression. Cecchetti (1997) 
summarized that the central bank, 
deflation, and the gold standard should be 
considered the key factors that caused the 
stock market crash and the Great 
Depression (Cecchetti, 1997). Afterwards, 
researchers have shifted to quantitative 
analysis on the stock price movements. 
Farmer, Gillemot, Lillo, Mike, and Sen 
(2004) studied the reasons for the highly 
volatile time periods on the London Stock 
Exchange. They found that liquidity, 
variations of less frequently traded stocks 
could cause the large fluctuations in stock 
market (Farmer, Gillemot, Lillo, Mike, & 
Sen, 2004). Additionally, Baker and 
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Wurgler (2007) also found that sentimental 
investors could cause some younger, lower 
capitalization, higher volatility, and growth 
companies to fluctuate much more heavily 
during the market volatile time periods, 
such as market crashes (Baker & Wurgler, 
2007). Similarly, Zouaoui, Nouyrigat, and 
Beer (2011) also found that investor 
sentiment had a strong positive 
relationship with the occurrence of a stock 
market crash within a one-year time 
period. However, how could we identify 
the occurrence of large-scale investor 
sentiment so that we could have indicators 
to predict and prevent a market crash? In 
order to identify this prevailing sentiment 
information, we propose an indicator of 
trading synchronization based on the 
clustering changes in the stock market 
complex network. 

In complex network theory, 
Mantegna (1999) has been the first to 
reveal the hierarchical structure or 
complex network in financial markets by 
analyzing the correlation matrix of stock 
price time series. Mantegna (1999) also 
confirmed the valuable information 
contained by time series of stock prices to 
predict the local structure movement for 
the stock market (Mantegna, 1999). 
Vandewalle, Brisbois, and Tordoir (2001) 
have found the topological structure in 
stock markets by analyzing a cross 
correlation matrix of 6358 US stock prices 
time series. They also confirmed the 
existence of complex network within stock 
markets (Vandewalle, Brisbois, & Tordoir, 
2001). Thereafter, Krause (2004) built a 
universal model of an evolving complex 
network and managed to predict the 
crashes by constructing a score function 
based on the eigenvalue of the correlation 
matrix. He has also concluded that his 
findings are consistent with the 
observations or homogeneous behaviors 
before financial market crashes (Krause, 
2004). Later in 2008, shortly before the 
market crash, Leibon, Pauls, Rockmore, 
and Savell used the Partition Decoupling 
Method (PDM) to display the topological 

structure in the US stock market. They 
have also found that the network clusters 
coincide with industry classifications and 
represent the capital flows moving through 
different stages (Leibon, Pauls, Rockmore, 
& Savell, 2008). Then, Tse, Liu, and Lau 
(2010) developed a correlation matrix 
study on all the US stock prices and found 
a vital and strong relationship between the 
market variation and a small group of 
stocks (Tse et al., 2010).  

Therefore, it is not difficult for us to 
relate these above studies to some of the 
key features of complex networks, that is, 
synchronization and scaling. 
Synchronization and scaling are the self-
organizing characteristics rooted within 
most complex networks. Scaling is used to 
describe the self-organizing mechanism 
due to the individual participants’ 
decisions in a scale-free network (Barabási 
& Albert, 1999). And synchronization 
describes the phenomenon that adding 
some small new information to a network 
can significantly cause the network to 
oscillate into a similar movement (Watts & 
Strogatz, 1998). As mentioned above, 
Leibon, Pauls, Rockmore, and Savell 
(2008) have developed a mathematical 
computation method to identify clusters of 
stocks (Leibon et al., 2008). We expect 
that changes in the clusters’ structure will 
allow us to identify a precursor of the 
stock market crash.  

Grossman and Stiglitz (1980) 
showed that the stock market could not 
remain in an equilibrium state when the 
information becomes costly. When 
information becomes costly (complex) 
traders resort to rule based trading and 
imitation, both informed and uninformed 
traders would affect each other to move up 
the stock price regardless of rationality 
(LeBaron, 2001). Sornette, Johansen, and 
Bouchaud (1996) studied the time series of 
the S&P 500 index and found a log-
periodic oscillation price pattern from 2 to 
four years before the 1987 stock market 
crash. Numerous studies on such pattern 
followed in Econophysics but results were 
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met with skepticism as data mining 
lacking theoretical underpinnings. 

Yalamova and McKelvey (2011) 
attempt to bring the Phase Transition 
Model closer to finance theory, proposing 
a dynamical system that moves between 
equilibrium market and bubble build up 
regime. They suggest the existence of a 
first critical point (tipping point) when the 
information complexity brings additional 
cost and based on Grossman and Stiglitz 
(1980) assertion market can not find 
equilibrium, traders herding and imitation 
creates a bubble build up. This ‘tipping 
point’ corresponds to the origination of the 
log-periodic oscillation pattern detected by 
econophysicists . Our contribution is 
aimed at supporting evidence of herding 
and imitation among traders that will be 
observed in synchronization of trading. 
Throughout his numerous publications 
Sornette equates the stock market to a 
complex dynamical system in disorder at 
equilibrium and fully ordered during crash 
(all traders sell). Yalamova and McKelvey 
(2011) relate the dynamics of 
synchronization to herding and imitation 
that produces agents’ homogeneity causing 
crash, which is the second critical point in 
the phase transition model. 

In our study, changes in the stock 
market network clusters’ structure is 
proposed as an indicator of the bubble 
building-up state. By analyzing a broadly-
used US stock market index, the S&P 500 
index, we can build a daily return 
correlation matrix by collecting the daily 
returns of all the S&P 500 constituent 
companies. We use the Potential-based 
Hierarchical Agglomerative (PHA) 
clustering method to capture the clusters’ 
structure by building the dendrogram 
linkage trees (Lu & Wan, 2013). We also 
apply the LANS method to extract the 
significant edge backbone from the 
correlation matrix (Foti, Hughes, & 
Rockmore, 2011). And then we plot the 
significant edge backbone to a dot matrix 
to display the clusters’ structures of both 
the market equilibrium state and the 

market disequilibrium state, such as the 
bubble building-up state (Newman & 
Girvan, 2004).  

The rest of the study is organized as 
follows. Section 2 reviews the related 
theoretical and empirical literature. Section 
3 develops the hypotheses for the clusters’ 
changes in different market states. Section 
4 summarizes the expected contributions, 
possible limitations of our study, and 
suggests further research directions.  

II. LITERATURE REVIEW 

 A. Stock Market Crash 

The Stock market crash 
describes the sudden and dramatic prices 
drop across the stock market. We focus on 
the endogenous stock market crashes 
where there is no external bad news. In the 
global stock market history, there are three 
major endogenous crashes: the 1929, the 
Black Monday 1987and the 2008-2009 
Crash. 

In 1929, the United States stock 
market experienced the most terrible 
market crash known as the Great Crash. 
During the two-day Black Tuesday crash, 
the U.S. stock market had generated a loss 
of over $30 billion. Within the 1929 Great 
Crash, the Dow Jones Industrial Average 
had hit the bottom closing at 41.22, which 
was the lowest level during the 20th 
century from the very peak level at 381.2 
from September 3th 1929 to July 8th 1932 
("Historical Prices, Dow Jones", n.d.). 

After the Wall Street Crash of 1929, 
there was another smaller crash of 1987 
that did not lead to a global bearish 
market. However, White (1990) compared 
the hypotheses to explain the 1929 stock 
market crash with the ones for the 1987 
market crash. White (1990) pointed out 
that the emergence of many newly 
published companies and the subsequent 
difficulties to evaluate those companies 
were the beginning stage of the stock 
market bubble, which finally caused the 
large-scale panic selling in 1929. For both 
of these two crashes, it was the similar 
massive panic selling behaviors that 
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triggered the dramatic price decrease. 
Researchers at that time mainly focused on 
the monetary policy and economy policies. 
Cecchetti (1997) summarized three factors 
causing this financial crisis, that is, the 
influence of the central bank, deflation, 
and the gold standard (Cecchetti, 1997). 
Doyne Farmer et al. (2004) applied 
quantitative analysis to study the reasons 
for the large fluctuations on the London 
Stock market and found out that liquidity 
and variations could be the key factors 
(Farmer et al., 2004). 

During the 2008 – 2009 Crash, 
investors in the stock market were 
negatively influenced by the exposure of 
consumer defaults on subprime mortgages 
and the resulting large-scale failures of 
financial institutions, such as the 
bankruptcy of Lehman Brothers. The S&P 
500 index had experienced a huge 53.9% 
drop from the peak point of 1565.15 to the 
bottom of 676.53 during the October 9th 
2007 - March 9th 2009 time period 
("Historical Prices, S&P 500", n.d.). Even 
though the failure of financial institutions 
and the exposure of consumer defaults on 
subprime mortgages triggered the 2008-
2009 market crash, investors’ 
homogeneous trading decisions, here 
mainly selling orders, caused the market to 
drop suddenly and dramatically. Therefore, 
this encourages us to consider the impact 
of trading behaviors and the limit order 
book data inherent in the stock prices.  

Based on the investor behavior 
standpoint, Baker and Wurgler (2007) 
found that the sentimental investors could 
drive the younger, lower capitalization, 
higher volatility, and growth companies to 
fluctuate much more severely during the 
market volatile time periods, such as 
market crashes (Baker & Wurgler, 2007). 
Similarly, Zouaoui, Nouyrigat, and Beer 
(2011) also found that investor sentiment 
had a strongly positive relationship with 
the occurrence of the stock market crash 
within a one-year time period (Zouaoui, 
Nouyrigat, & Beer, 2011). Obviously, there 
is a common market crash point, the so-

called “Minsky Moment”, for both of the 
two major market crashes. Right before the 
two major crashes, we can recall that the 
market was experiencing unsustainable 
growth and reached the peak level at that 
time. So investors were eager to put more 
money into the market during this 
unsustainable growth period. However, 
once the traders’ buying behaviors lead to 
the Minsky Moment, the market crashed 
down and into the global depression as the 
two major crashes had shown (Yalamova 
& McKelvey, 2011). What is more, the 
sequence of investors’ behavior is the 
simulator of the market phrase changes 
(Yalamova & McKelvey, 2011). Baker 
(2009) and Foster and Magdoff (2009) also 
mentioned that Wall Street, the Federal 
Reserve and other financial experts should 
have noticed the indisputable facts and 
cumulative risk of the derivatives, high 
leverage, and other subprime mortgages 
that were trading in the market.  

 
B. Complex Network 

Complexity science was founded in 
the 1980s. It uses non-linear mathematics 
to deal with problems in physics, 
chemistry, economics, society, biology and 
so on (Prigogine, 1980). Complexity 
studies the interactions among the sub-
systems and their properties, patterns, and 
mechanisms. And complexity theory can 
explain the evolution, emergence, and 
adaptability in complex networks. 
Complexity theory breaks from Sir Isaac 
Newton’s world outlook. Complexity 
studies the whole complex network’s 
properties that come from the interactions 
among the sub-systems. With the 
development of complexity theory, 
researchers have found that complex 
networks are an essential part of 
complexity theory. Complex networks 
promote the development of complexity 
science. All complex networks come from 
reality and exist around us all the time.  

Watts and Strogatz (1998) published 
an article in Nature journal. They 
discussed the structure and dynamics of 
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small world networks. They also found out 
that adding some small new information to 
a network can significantly cause the 
network to oscillate into a similar 
movement (Watts & Strogatz, 1998). This 
phenomenon is described as 
synchronization afterwards. In 1999, 
Science journal published Barabasi and 
Albert’s (1999) article that showed us the 
scale-free complex network model. They 
have pointed out that scaling is to describe 
the self-organizing mechanism due to the 
individual participants’ decisions in a 
scale-free network (Barabási & Albert, 
1999). Over the next decades, scientists 
have devoted themselves to complex 
networks and have gained numerous 
meaningful results. With the rapid 
development of computer science, research 
on complex network has also developed 
quickly. The analysis of complex networks 
changed from hundreds of nodes to 
millions of nodes. By analyzing different 
kinds of networks, researchers made 
significant research achievement. Firstly, 
scholars adopted new definitions and 
measurements to describe the topology of 
networks. Secondly, by simulating 
complex networks with the use of dynamic 
models, researchers were able to display 
the topology of real complex networks. 
The nodes in the network are abstracted 
out of the real interacted individuals. The 
lines between nodes represent the 
interactions. All the nodes and their 
connections form a network. 

In networks, all the calculations 
are dependent on the adjacency matrix. 
The matrix has 𝑁2 orders. We can use the 
average connection length to represent the 
relevance of nodes. 

𝐿 =
1

1
2

𝑁(𝑁+1)
∑ 𝑑𝑖𝑗

𝑖≥𝑗

 

(2.1) 
In equation 2.2, N represents the 

number of nodes in a network. 𝑑𝑖𝑗 is the 
distance between node i and node j, 
representing the shortest distance. The 
maximum distance between two random 

nodes is the diameter of this network, 
represented by D: 

𝐷 = max 𝑑𝑖𝑗  
(2.2) 

As the emergence of scaling in 
network, Barabási and Albert (1999) also 
found that the common feature of natural 
complex networks is the nodes’ 
correlations following a scale-free power 
law distribution (Barabási & Albert, 1999). 
The scale-free power law distribution is as 
follows: 

𝑃(𝑘) ~ 𝑘−𝛾  (2.3) 
Here, 𝑃(𝑘) denotes the probability of one 
node having 𝑘 number of edges with other 
nodes. While 𝛾 denotes the power of those 

edges, 𝛾 has a range of 2 to 3 in most 
networks (Barabási & Albert, 1999). The 
scale-free power law distribution has a 

long tail for larger 𝑘. 
 
B.1  Stock Market Complex Network 

Stock prices reflect investors’ 
valuation of the company incorporating all 
the information public or private. 
Historical stock prices are used to analyze 
returns, volatility, movements in i.i.d 
fashion . Mantegna (1999) find a 
hierarchical arrangement of stocks traded 
in a financial market by investigating the 
daily time series of the logarithm of stock 
price. Vandewalle, Brisbois, and Tordoir 
(2001) studied the topological correlations 
for neighbouring nodes of the Minimum 
Spinning Tree and confirmed local 
structure evolving. Onnela et al. (2006) 
construct a weighted financial network for 
a subset of NYSE traded stocks, in which 
the nodes correspond to stocks and edges 
to interactions between them. Leibon, 
Pauls, Rockmore, and Savell (2008) 
introduced a new method to study the 
topological structure and to display the 
scale-dependent distribution within many 
complex networks. They analyzed the 
daily return correlation matrix built from 
the New York Stock Exchange (NYSE) 
and National Association of Securities 
Dealers Automated Quotation (NASDAQ) 
traded stocks. And they found the 
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existence of scales corresponding with the 
movement inside the stock market and that 
the stock market is a classic complex 
network (Leibon et al., 2008). Tse, Liu and 
Lau (2010) analyzed the cross correlations 
of all the US stocks traded over a specific 
time period and reported the scale-free 
degree distribution in stock price returns 
and trading volumes based stock market 
networks. Tse et al. (2010) also concluded 
that the variation of the majority stock 
prices was strongly correlated with a 
relatively small number of highly 
connected stocks, which corresponded to 
the scale or cluster conclusions from 
previous researchers. 

 
B.2  Scaling and Synchronization  

As mentioned above, 
synchronization and scaling are the two 
key characteristics in the natural complex 
network (Watts & Strogatz, 1998; Barabási 
& Albert, 1999). What’s more, researchers 
have worked on the demonstration on the 
scaling of stock market complex network 
as well. 

Scaling is an essential feature in 
complex networks. It describes the self-
organizing mechanism due to the 
individual participants’ decisions in a 
scale-free network (Barabási & Albert, 
1999). In addition, scaling is the 
mechanism for the accelerating growth in a 
network once some connections are 
enhanced. It is also the growth engine 
within most of the common networks, such 
as genetic networks, the World Wide Web 
system, business networks, and social 
networks that describe individuals or 
organizations (Barabási & Albert, 1999). 
Barabási and Albert (1999) found evidence 
of a self-organization characteristic and the 
power law or scale-free distribution, 
𝑃(𝑘) ~ 𝑘−𝛾, in complex networks. 𝑃(𝑘) is 
the probability that one individual interacts 
with 𝑘 other individuals (Barabási & 
Albert, 1999). Barabási and Albert (1999) 
have also proved that growth and 
preferential attachment within natural 
networks are the key mechanisms for 

network evolution, including business 
networks, which explains the ‘richer-get-
richer’ phenomenon (Barabási & Albert, 
1999). In 2000, Albert and Barabási 
extended their research on the power law 
distribution in complex networks and 
developed a phase diagram theory to 
predict the scaling exponents. And they 
concluded in favor of the existence of 
scale-free phase and exponential phase 
(Albert & Barabási, 2000).  

Later in 2002, H. Kim, Kim, Lee 
and Kahng analyzed the network 
composed of S&P 500 constituents and 
found the power law distribution in edge 
absolute magnitude (Kim, Kim, Lee, & 
Kahng, 2002). H. Kim et al (2002) results 
have further proved the scale-free 
distribution existing within the connection 
strength of a stock market network (Kim et 
al., 2002). They also expected that 
pullback of one single stock among the 
most influential companies could lead to a 
crash in the stock market due to the power-
law distribution (Kim et al., 2002). They 
also found the exponent of the power-law 
distribution for the S&P 500 constituents 
network to be around 1.8 (γ ≈ 1.8) (Kim et 
al., 2002). Afterwards in 2003, Guimerà, 
Danon, Díaz-Guilera, Giralt, and Arenas 
studied a social email network and found 
the scaling and self-organized feature 
within the network of human interactions 
(Guimerà, Danon, Díaz-Guilera, Giralt, & 
Arenas, 2003). In the same year of 2003, 
Ravasz and Barabási proved that the 
scaling and self-organization features of 
complex networks were due to the 
hierarchical structure of complex networks 
(Ravasz & Barabási, 2003). Then, Amaral 
and Ottino (2004) summarized the 
literature on the important areas for the 
study of complex networks. They 
supported the conclusion that scaling was 
vital to study the critical phenomenon that 
led to the structure changes in an evolving 
network (Amaral & Ottino, 2004). What is 
more, scaling and scale-free distribution 
can also explain the correlated volatility 
which often occurred in the stock market. 
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For example, different companies’ stock 
prices can drop together even though 
there’s no information released for this, 
which differs with the Efficient Market 
Hypothesis. In summary, scaling and 
scale-free distribution have been proven by 
various researchers to be vital adaptive 
features and to be the growth engine for 
the exponential growth or decay and 
volatility evolution within a stock market 
network. 

Synchronization is another vital 
characteristic existing in natural complex 
networks. Synchronization describes the 
phenomenon that adding some small new 
information to a network can significantly 
cause the network to oscillate into a 
similar movement (Watts & Strogatz, 
1998). We suggest market crashes in the 
stock market occur as a result of the 
expression of synchronization within the 
evolving and self-organized stock market 
complex network. Barahona and Pecora 
(2002) identified synchronization could lie 
within the phase diagram boundary, which 
might lead to the phase change of a 
complex network (Barahona & Pecora, 
2002). Nishikawa, Motter, Lai, and 
Hoppensteadt (2003) further proved the 
synchronizability of networks especially 
those with a higher degree of homogeneity, 
such as neural networks (Nishikawa, 
Motter, Lai, & Hoppensteadt, 2003). 
Krause (2004) conducted an empirical 
study on the crashes of evolving complex 
networks that contain extinct individuals. 
Krause (2004) found a high degree of 
homogeneity in the investment choices 
before the stock market crashes. He also 
presented the figure that showed the 
variance of behaviors decreased 
significantly before a crash (Krause, 
2004). In the stock market, 
synchronization describes the highly 
homogeneous traders’ behaviors, such as 
herding, imitation in the bubble building-
up stage in the stock market. 

In order to reveal the relationship 
between synchronization and scaling, 
Arenas, Díaz-Guilera, and Pérez-Vicente 

(2006) studied the dynamic movement 
towards the synchronization of a complex 
system. They concluded that modular 
structure and nodes emerged and evolved 
during the synchronization process. This 
shows us that it is important to pay 
attention to the structure change before and 
after crashes. As noted in Arenas, Díaz-
Guilera, Kurths, Moreno, and Zhou’s 
research (2008), they summarized the 
results of using the correlation return 
matrix to study the synchronization pattern 
in stock markets (Arenas, Díaz-Guilera, 
Kurths, Moreno, & Zhou, 2008). Arenas et 
al. (2008) concluded that stocks could 
synchronize and be strongly connected by 
some interactions in the market, such as 
money flows or sector correlations (Arenas 
et al., 2008).  In 2011, Gómez-Gardeñes, 
Moreno, and Arenas further proved the 
synchronization patterns differ between 
homogeneous and heterogeneous complex 
networks. And they concluded that nodes 
and scaling clusters are the key drivers 
during the synchronization transition 
(Gómez-Gardeñes, Moreno, & Arenas, 
2011). In 2013, Singh, Sreenivasan, 
Szymanski, and Korniss applied a 
threshold model to reveal the fact that 
individual opinion could become a 
threshold point once all the neighbors 
adopted the same opinion. They also 
concluded that the local clustering 
promoted the synchronization 
phenomenon in a high-school friendship 
network (Singh, Sreenivasan, Szymanski, 
& Korniss, 2013). In 2014, Brú, Alós, 
Nuño, and de Dios built a graph to show 
the growing scaling interface in dynamic 
networks. They concluded that graphs 
could also reveal the scaling property in 
complex networks and critical exponent 
existed in the network as well (Brú, Alós, 
Nuño, & de Dios, 2014).  

All in all, scaling can be used to 
explain the market volatility and evolution 
and the bubble building-up mechanism in 
a stock market network. And 
synchronization describes the highly 
homogeneous behavior or stock price 
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coincident movement in a stock market 
network. 

 
C.  Phase Transition Theory 

According to the Efficient Market 
Hypothesis, the market equilibrium state 
should reflect all the available information 
in the market (Fama, 1970). And the 
equilibrium expected return is the 
expressed form of the market equilibrium 
state (Fama, 1970). Once the market 
information is not available to everyone, 
the market will step into a disequilibrium 
state. There will be uninformed and 
informed investors regarding some specific 
information in the market. Therefore, in 
order to explain the abnormal market 
movement or disequilibrium state in stock 
market, Grossman and Stiglitz (1980) 
studied the market disequilibrium state 
reflected by the stock prices and the degree 
of uninformed investors influenced by the 
informed investors. They also proved the 
impact of the price system on information 
spreading from informed traders to 
uninformed investors by building a mimic 
stock market model, which would be 
considered to be a reason for the ‘herding 
behavior effect’ in the stock market 
(Grossman & Stiglitz, 1980). In other 
words, the limit order book, such as bid 
orders or ask orders, is believed to contain 
information from informed investors. If the 
number of ask orders exceeds the bid 
orders, this would show a good perspective 
for this stock. This means that the 
information here is not fully public and 
efficient to everyone. Information becomes 
costly here, which would influence the 
uninformed investors to imitate the 
informed ones (Grossman & Stiglitz, 
1980).  

In 1996, Sornette, Johansen, and 
Bouchaud studied the time series of S&P 
500 index before and after the 1987 stock 
market crash and found the existence of a 
log-periodic oscillation price pattern with a 
dynamical critical point during the crash 
(Sornette, Johansen, & Bouchaud, 1996). 
Sornette et al. (1996) also suggested a 

phase transition theory to explain the log-
periodic pattern. Afterwards, Sornette 
(2006) has further proved the existence of 
critical events in stock market complex 
networks and other natural networks 
(Sornette, 2006). In addition, Sornette also 
fully explained the stock market crash by 
applying the critical point theory (Sornette, 
2009). In a market disequilibrium state, 
once the uninformed traders start to make 
investment decisions based on other 
traders’ behaviors, both informed and 
uninformed traders would affect each other 
to move the stock price regardless of 
rationality (LeBaron, 2001). LeBaron 
(2001) applied the agent based model to 
explain the similar herding effect above. 
LeBaron (2001) found that rational agents 
and non-rational agents would interact 
with each other and lead to higher 
volatility or large price jumps (LeBaron, 
2001). The influence from rational agents 
on non-rational agents would cause the 
imitating behavior or herding behavior, 
similar to the effect of asymmetric 
information in a market disequilibrium 
state. This ultimately will lead up to 
market crash if there is no market 
regulation or interfering. In this study, we 
can take the market crash building-up 
stage as an apparent market disequilibrium 
state. 

Based on the empirical study and 
complex network theory above, Yalamova 
and McKelvey (2011) built an innovative 
Phase Transition Model analogical from 
physics theory to explain the homogeneous 
behaviors, such as herding behavior in 
stock market (Yalamova & McKelvey, 
2011). According to their model, the 
imitating behavior or herding behavior 
occurs at the ‘tipping point’, which 
eventually triggers a crash (Yalamova & 
McKelvey, 2011). This explanation also 
corresponds to the synchronization and 
scaling phenomenon existing in complex 
networks. In addition, Yalamova and 
McKelvey (2011) have also illuminated 
the existence of a critical point at which 
the highest level of homogeneous trading 
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behavior happens, that is, the market crash 
point. Besides this, they have pointed out 
that the building-up mechanism of 
homogeneous trading behavior is driven 
by the scaling and synchronization 
characteristics of complex network in the 
stock market (Yalamova & McKelvey, 
2011).  

The Phase Transition Theory and 
other empirical evidence have converged 
to provide us a solid theory to explain the 
mechanism of stock market crashes. 
Meanwhile, the studies from both stock 
market complex networks and other 
complex networks have also contributed a 
firm background to extract the structure of 
complex networks. To the best of our 
knowledge, we find no empirical research 
to extract the cluster structures from the 
market equilibrium state to a bubble 
building-up state explaining with Phase 
Transition Theory. Therefore, it is 
worthwhile to apply the complex network 
clusters extraction method to study the 
structure changes during stock market 
crashes. What’s more, this study will allow 
us to contribute both to the empirical 
analysis on the dynamics of the stock 
market network and on the growing 
literature of econophysics. 

 
III. HYPOTHESES 

As summarized in the Literature Review 
part, there are at least two different market 
states, the market equilibrium state and the 
market disequilibrium state. Under a 
market equilibrium state or an Efficient 
Market, the stock expected return should 
have fully revealed the available 
information in the market (Fama, 1970). 
According to the study on scaling and 
synchronization feature in complex 
networks and the Phase Transition Theory, 
we apply these to the stock market 
network and reveal the cluster movement 
to prove the existence of a critical point 
before stock market crashes by analyzing 
the stock market price correlations matrix 
(Onnela, Chakraborti, Kaski, Kertész, & 
Kanto, 2003). In this study, we expect to 

observe the number of clusters changing 
from a market equilibrium state to the 
critical point before market crashes by 
computing the stock daily return 
correlation matrixes in some specific ways. 
Therefore, our hypotheses are as follows: 

In market equilibrium state, there are 
mainly sector clusters because of the high 
correlation among stock prices within the 
similar industries, such as financials or 
technologies (Leibon et al., 2008). 
Besides, based on Foti, Hughes, and 
Rockmore’s (2011) results, there exist 22 
sector clusters for the S&P 500 index 
constituents. So, in the market equilibrium 
state, we expect to observe sector clusters 
and develop the first hypothesis. 

H1: In the market equilibrium 

state, there should be at least 22 

clusters. 

According to the Efficient Market 
Hypothesis, the market equilibrium state 
should reflect all the available information 
in the market (Fama, 1970). And the 
equilibrium expected return is the 
expression form of the market equilibrium 
state (Fama, 1970). Therefore, if the 
market is still in a market equilibrium 
state, there should always be sector 
clusters and there should exist a similar 
number of clusters during different time 
periods. In the market equilibrium state, 
we also expect to observe sector clusters 
and the number of clusters should be 
similar even during different time periods. 
Hence, we develop the second hypothesis 
here. 

H2: In the market equilibrium 

state, there should be a similar number 

of clusters during different time periods. 

However, if it is in a market 
disequilibrium state, the specific 
information is only available to the 
informed investors and will lead to the 
uninformed investors’ herding behaviors in 
the market (Grossman & Stiglitz, 1980). 
Once this herding behavior becomes 
increasingly severe, it will reach a 
common market crash point, the so-called 
“Minsky Moment” or Critical Point 
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(Yalamova & McKelvey, 2011) in a stock 
dynamic network. According to the study 
on the scaling and synchronization feature 
in complex networks and the Phase 
Transition Theory, the critical point 
represents the extreme synchronization 
phenomenon in the scaling process of 
dynamic complex networks. At the critical 
point, the stocks are highly correlated 
despite the different sectors. Therefore, the 
critical point captures the patterns of stock 
market crashes (Yalamova & McKelvey, 
2011). So, there will be fewer clusters 
because of the higher and wider correlation 
among stock prices within the whole 
market despite the variation in the sectors 
or industries. Therefore, we expect to 
observe fewer but larger clusters, 
sometimes even only one large cluster, 
during the critical point building-up time 
period in the market disequilibrium state. 
So, in the market disequilibrium state, we 
develop the third hypothesis. 

H3: In an extremely evident 

market disequilibrium state, such as the 

pre-crash critical point, there should be 

fewer clusters or even only one cluster. 

 

IV. CONTRIBUTION AND LIMITATION 

A. Contribution 

Based on the PHA clustering results 
and the Dot Matrix Plot results under the 
market equilibrium state and the market 
disequilibrium state, we have observed 
actual clusters’ movement and clusters’ 
converging from the market equilibrium 
state to the disequilibrium state. We have 
analyzed the whole process building up to 
the 2008 – 2009 market crash by applying 
the network computation to the US S&P 
500 index network. And we have identified 
the significant change in the number of 
clusters from an equilibrium market to a 
pre-crash disequilibrium state. In this 
study, we propose an indicator of the 
bubble building-up state in the stock 
market. Imitation and herding behaviors 
can be detected as synchronization of a 
stock market complex network, which 

leads to fewer but larger clusters. We 
believe that we are the first to introduce 
this precursor of the stock market crashes 
to detect the bubble building-up state. 

Therefore, we believe that we have 
uncovered some insight into the stock 
market crash dynamics, and we provide an 
‘destabilizing dynamics’ precursor to 
benefit regulators and market participants. 

Market regulators could have been 
blamed for the lack of proper interference 
and regulation in the market. In order to 
help maintain the market equilibrium state, 
it is necessary to find bubble build-up 
signs. Our study provides a new indicator 
to detect the bubble or pre-crash dynamics 
by computing the number of clusters. 
Therefore, we would like to provide 
another possible indicator to detect a pre-
crash disequilibrium state in the market. A 
convergence of clusters may indicate 
synchronization of trading strategies, 
imitation and herding leading to a crash.  

 
B. Limitation 

Our empirical results cover only 
stock price dynamics before 2008 – 2009 
market crash, more empirical evidence 
using different methods is needed to 
support the trading synchronization theory. 
We hope there will be further studies to 
test other market crashes and further 
evidence to support our study. Our study 
has shed some light on research in 
identifying clusters’ patterns in the stock 
market network and could be useful for 
market regulators, stock investors, and any 
other market participants.  

 
V. CONCLUSION 

 Researchers from multiple 
disciplines have tried to model price 
patterns before stock market crashes. 
Independent empirical evidence has 
converged to prove the synchronization 
phenomenon as the trigger of stock market 
crashes (Tse et al., 2010). As well, the 
Phase Transition Model explains the 
building-up mechanism and the critical 
point theory in stock market crashes 
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(Yalamova & McKelvey, 2011). In this 
study, we have proposed a possible method 
to identify the synchronization or pre-crash 
building-up stage before the 2008 – 2009 
crash introducing a novel hierarchical 
clustering method - the Potential-based 
Hierarchical Agglomerative (PHA) 
clustering method used in biology and 
physics and applied this method to the US 
stock market network (Lu & Wan, 2013). 
In addition, we have applied another novel 
significant correlation matrix extraction 
method in order to build up the significant 
visual display of the clusters. What’s more, 
we have adopted a Dot Matrix Plot method 
that is mainly used in bioinformatics to 
show a graphical display of the clusters 
under different market states. By applying 
these methods to our data set, we found the 
results that support our hypotheses. Our 
findings correspond to Leibon et al.’s 
(2008) study on the topological structure 
and the existence of sector clusters in the 
US stock market. As well, our results also 
further support Foti et al’s (2011) 
conclusion that there have been 22 clusters 
within the S&P 500 index constituents. We 
have also identified that there exists the 
similar number of clusters during different 
time periods under the market equilibrium 
state. We found 28 clusters, 26 clusters, 30 
clusters, and 30 clusters during the time 
periods of Jan 2nd 2002 to Dec 31st 2002, 
Jan 2nd 2003 to Dec 31st 2003, Jan 2nd 
2004 to Dec 31st 2004, and Jan 3rd 2005 to 
Dec 30th 2005 respectively. More 
importantly, we have also identified the 
clusters’ convergence into only one large 
cluster in the market disequilibrium state, 
which further supports our hypotheses.  
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