
 

 

 
Abstract—This research investigates how the codebase 

and acceptance tests have changed over time using version 

control. An essential requirement for this evaluation is 

analyzing software development and test cases used in 

real-world projects. The data stored in software 

repositories is vital for software systems. Access to prior 

versions of the program and the ability to differentiate 

between adjacent versions using acceptance tests and 

source code modifications can provide insight into how the 

software evolves. A skillful visualization method is 

required to achieve this level of awareness. This research 

presents a visualization method for tracking the 

concurrent evolution of source code and acceptance tests 

within software development projects. The case study 

looks at four open-source projects taken from the real 

world that have acceptance tests hosted on GitHub. The 

proposed visualization method enables the negative slope 

on two projects for the source code and acceptance test co-

evolution to be quickly observed, and with such an 

observation, the project team can take necessary actions to 

change the course of the co-evolution. 

 

Keywords—Mining software repositories, Software 

metrics, Software test co-evolution, Software visualization.  

I. INTRODUCTION 
ISUALIZATIONS can shed light on several facets of the 
software development process, and the combination of 

multiple visualization approaches can provide a more 
comprehensive understanding of the evolution of the codebase 
under consideration. This paper proposes a visualization 
technique for software projects with the necessary attributes to 
monitor source code and acceptance test co-evolution. 

Visualizing the progress of source code can aid in 
understanding the growth of a codebase. It is possible to 
visualize the development of source code through file version 
history. Many version control systems, such as Git, monitor 
the history of individual file modifications. Viewing the 
history of a specific file can give insights into when changes 
were made. 

Examining the progress of source code in conjunction with 
the advancement of acceptance tests offers a comprehensive 
perspective on developing a software project. The 
development of source code and acceptance tests can be 
systematically traced to demonstrate a definitive correlation 
between modifications made to the code and corresponding 
adjustments in the acceptance tests. This tracing can help us 
comprehend how code modifications correspond to changes in 
the software's functionality-validating tests. This traceability 
can be utilized to visualize the relationship between code 
modifications and the corresponding acceptance tests. This 
traceability allows us to identify patterns, such as whether code 
modifications result in test updates or the creation of new tests. 
In addition, we can see how acceptance tests have been 
updated to account for new features, modifications, and bugs. 

This study presents a novel visualization method that 
facilitates the correlation between acceptance test 
modifications and corresponding software code changes. 
Consequently, it allows for the comprehensive documentation 
of the program's evolution and the associated acceptance tests. 
This approach guarantees that the project team possesses 
comprehensive visibility into the co-evolution of the source 
code and acceptance tests. This observability enables the team 
to undertake appropriate measures to enhance the quality of 
the product and ensure that it aligns with user expectations as 
it progresses. 

We concretized the proposed approach by using data mined 
from GitHub repositories. As explained in Section 4, the 
project selection resulted in 21 projects with acceptance tests. 
We take the top four projects with maximum major or minor 
version counts for the proposed visualization technique. 

The structure of this paper is as follows. The second section 
is a summary of the relevant literature. The third section 
explains the proposed method and describes the instrument 
that produced the deliverables. The results and analysis of this 
investigation are presented in Section 4. The paper concludes 
with Section 5. 
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II. RELATED WORK 
Software development involves more than adding features. 

It also requires testing. The software evolves with each release. 
Software and test suites should evolve together. If test suites 
are not updated for each program change, they become old and 
useless. Tests are sensitive to even the slightest changes in the 
code, [1]. The software's functionality can be altered by 
modifying a boolean variable. Some tests may become 
irrelevant due to these modifications, leading to untested 
production code. According to [1], a 1% change in program 
branches might result in a 16% decrease in test code coverage. 
The decay in testing results from fixing bugs, modifying 
existing features, adding new features, and reworking existing 
code. As a result, updated application test suites must be 
patched or regenerated, [2], [3], [4], [5], [6]. Fixing test cases 
for every program version can be time-consuming, [7]. It is 
essential to comprehend the how and why of test repair for the 
process of test evolution, [8]. 

The study, [4], studied the co-evolution of test and 
production code throughout the software's lifecycle, utilizing 
versioning system software repositories. The primary area of 
emphasis for their research was unit testing. The study utilized 
statistical methods to analyze many aspects, such as 
production and test code revisions, file changes for each 
version, and software test coverage. The researchers 
discovered the data mentioned above on two open-source 
projects and one industrial project, enabling them to ascertain 
the degree of synchronicity between the evolution of test and 
production code. Additionally, they could identify whether 
there was an increase in test writing activity before significant 
software releases. In addition, they proposed the utilization of 
visual aids to monitor the progression of software testing and 
the evolution of production code. It was discovered that the 
implementation of development updates initiated the evolution 
of the project in two out of three endeavors. In the other 
project, there was a more simultaneous evolution of both the 
test and production code. The rate of evolution has never 
surpassed the rate of production code development. Before a 
major release, these projects lacked a substantial testing phase 
for writing tests. Similar to previous studies conducted on this 
subject matter, a notable limitation of this study is its analysis 
of only three projects. Consequently, the findings derived from 
this limited sample size may not apply to a broader population 
but only to those projects that align with the characteristics of 
the studied cases. 

In, [9], the authors presented a methodology aimed at the 
automated restoration of unit tests that have become outdated 
due to alterations in method declarations or signatures. The 
primary area of emphasis was on outdated unit test cases that 
resulted in compilation issues. The researchers analyzed 262 
iterations of test and production code evolution during the 
problem-solving process across 22 open-source projects. Out 
of the 22 projects now under review, it was observed that 53% 
of the versions did not update the method signature. 
Consequently, the test methods associated with these versions 

produced no compilation issues. The primary area of their 
investigation revolved around test repair. However, throughout 
the development and implementation of the repair tool, they 
analyzed the program through the process of repository 
mining, examining the co-evolution of both test and 
production code. 

The study, [7], initially examined 80 iterations of software 
systems to assess the nature of modifications made by 
developers when updating outdated test cases and how 
developers repurposed existing test cases to build new and 
accurate ones. The researchers extracted data from the 
software repositories to analyze the program modifications 
between different versions and obtain relevant information. 
Their investigation primarily focused on the disparities in 
method signatures across different versions. Based on the 
provided information, the researchers could ascertain whether 
the test case for the specified technique had been modified 
and, if so, the modifications' nature. 

According to, [5], it is imperative to comprehend the 
evolution of test cases in real-world projects to facilitate the 
automated repair of such test cases. Without practical 
obstacles, the acquired knowledge remains applicable only 
within a limited scope of test cases or software projects. The 
study incorporated a total of six real-world projects alongside 
the implementation of unit testing. The test suite evolution of 
these projects was classified into four categories: test repairs, 
additions, removals, and refactoring. Statistics regarding the 
test changes were furnished based on six real-world initiatives. 
The tests that have been refactored and corrected are called 
Test Modifications. The process of modifying a deprecated 
test case and successfully executing it is commonly referred to 
as test repair. 6.4% of the modifications made to the test were 
classified as fixes. During the process of test refactoring, the 
test undergoes modifications that involve incorporating a new 
library and altering variable names. 22.9 percent of the test 
modifications conducted were categorized as refactoring. The 
test deletions encompassed outdated, challenging-to-rectify, 
and unnecessary assessments. Despite the discontinuation of 
the test, its functional aspects continue to persist in the 
projects, posing challenges in rectification. The test cases were 
rewritten entirely due to the perception that they were too 
intricate to rectify. 

The study, [10], developed a software application called 
TestEvol. This tool was specifically built to analyze the 
evolutionary patterns of test suites for Java programs and their 
associated JUnit test cases. The tool developed by the authors 
can analyze two distinct versions of a program with their 
corresponding test suites. The purpose of this system is to 
detect any changes made to the unit tests and generate 
statistical information regarding the influence of these 
adjustments on the code coverage. 

The study, [11], has developed a software tool that aids in 
examining specific software versions, their associated unit 
tests, and the progression of code coverage. The technology 
was utilized in six pragmatic applications, resulting in 

INTERNATIONAL JOURNAL OF COMPUTERS 
DOI: 10.46300/9108.2023.17.2 Volume 17, 2023

E-ISSN: 1998-4308 9



 

 

statistical data from these endeavors. The tool provided by the 
authors presents information regarding the co-evolution of unit 
tests and source code, the size of software patches concerning 
patch type, and statistics on code coverage. 

The analysis undertaken by, [12], focused on five open-
source projects to investigate the co-evolution trends between 
unit tests and source code components. Their approach's 
novelty is in applying associative rule mining techniques to 
detect complex co-evolutionary associations. A comprehensive 
analysis of the five studies revealed the presence of a total of 
12 unique patterns, some of which were seen across multiple 
projects. A qualitative analysis was performed to investigate 
the statistical data related to the incorporation of the test class 
alongside the source class within the same commit, the 
subsequent commit without the test class, or the alteration of 
the existing test class resulting from adding the new source 
class. 

The study, [13], also investigated the co-evolution 
relationship between source and unit test codes. The research 
encompassed a comprehensive set of 61 open-source projects 
and analyzed a substantial dataset of over 240,000 
contributions from well-known open-source project platforms 
such as GitHub and BitBucket. A notable finding indicates that 
test maintenance was noticed in more than 50% of the changes 
in certain projects. In specific cases, the proportion was less 
than 15%. The proportion of commits allocated to the 
maintenance of tests in the absence of a particular project 
surpassed 68.5%. Additionally, it is essential to acknowledge 
that some projects exhibited a deficiency in having a 
specialized maintenance system for conducting tests, leading 
to a dependence on the project for testing. 

The investigation carried out by, [6], analyzed the 
progression of unit test suites in eight distinct iterations of Java 
systems. The primary aim of this study was to acquire a deeper 
understanding of the procedures and methodologies utilized in 
developing and refining these test suites. The authors saw a 
rise in the size of the test suite over time, as indicated by their 
research findings. Additionally, it was observed that the 
complexity of the tests stayed consistent throughout the 
software's progress. Additionally, it was discovered that the 
efficacy of the test suite generally increased as time 
progressed. Regarding code coverage, it exhibited a rise in 
45.7% of the software versions, maintained stability in 28.6% 
of the versions, and experienced a decrease in 25.7%. 

All the above research is merely concentrated on source 
code and unit tests. The authors conducted the first research on 
the source code and acceptance test co-evolution, [14]. This 
paper builds on that research by adding a visualization 
approach to demonstrate the co-evolution. Moreover, previous 
research on source code and unit test co-evolution has not 
considered the visualization-related metrics but on tool 
development for the examination of co-evolution. All the 
values in the above literature would have been visualized even 
over time, not as a snapshot. 

III. PROPOSED METHOD 
Following the metrics at the project level proposed by, [15], 

our approach collects the source code's size and the addition 
and removal of source code as a line of code. On top of that, 
we added the size of the acceptance tests and the addition and 
removal of acceptance tests as a line of tests. Unlike, [15], we 
propose presenting these values with respect to versions on a 
version count line in increasing order. This way, we enable 
developers, team leaders, and project managers to observe the 
growth and stagnation phases in the software evolution. The 
same is valid also for acceptance tests. Moreover, by 
visualizing both source code and test code progress 
simultaneously, the co-evolution can be observed, and 
necessary decisions can be made for project management. 
Visualization of the co-evolution of source code and 
acceptance gives clues about the quality of the software, which 
we believe to be very important. 

We also propose to visualize the addition and removal of 
source code and acceptance tests as a scatter plot. This way, 
we enable developers, team leaders, and project managers to 
observe changes and especially improvements version by 
version. In our approach, we include version information 
concerning semantic versioning, which is categorized as 
major, minor, and patch versions. Table I shows our count 
metrics, [14]. Furthermore, we developed ratio metrics shown 
in Table II, [14]. 

 
Table I. Count metrics for the software projects, [14]. 

Acronym Explanation 
VC all Version Count (incl. patches) 
MMVC Major-Minor Version Count 
SLOC Source Line of Code 
TLOS acceptance Test Line of Scenario 

 
On the scatter plot graphs, we also provide a trend line for 

the MMTOA metric to indicate the trend of how acceptance 
tests have co-evolved with source code and give an idea about 
the expectance of future versions. The software development 
team can, of course, reverse the trend. To achieve that, they 
need to know, and visualization summarizes it well. 

Spider charts, often referred to as radar charts, are helpful as 
a visualization tool for simultaneously representing and 
comparing several aspects of data. Providing a comprehensive 
perspective of numerous metrics can assist in concretizing the 
strategy of code evolution and acceptance test evolution. 
Spider charts offer a visually captivating and intuitive method 
for displaying multidimensional data, rendering them well-
suited to analyze the progression of code and acceptance tests 
across our ratio metrics. 
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Table II. Ratio metrics for the software projects, [14]. 
Acronym Explanation acceptance Test 

Update 
Source code 
Update 

MMTOA for Major-Minor version types, acceptance Test updates / (Over) All updates Always Don’t care 
MMSOA for Major-Minor version types, Source code updates / (Over) All updates Don’t care Always 
AVOTOA For all Version types, Only acceptance Test updates / (Over) All updates Always Never 
AVOSOA For all Version types, Only Source code updates / (Over) All updates Never Always 
AVSATOA for All Version types, Source code, And Test updates / (Over) All updates Always Always 
AVTOA for All Version types, acceptance Test updates / (Over) All updates Always Don’t care 

 
Progress is tracked over versions through the spider charts, 

enabling developers to make well-informed judgments 
regarding enhancements to the source code and the acceptance 
tests. It is important to note that spider charts should be 
utilized alongside other visualization approaches to 
comprehend the development process. 

IV. CASE STUDY 
We selected real-world open-source applications from 

GitHub for our analysis. Our first project selection criteria was 
identifying projects containing “.feature” Gherkin files. We 
found all projects with stars and Gherkin files using GitHub’s 
proprietary search engine using the search query: “stars:>1 
language: gherkin”. We identified 601 projects that met these 
criteria. Using scraping, we then obtained the name, URL, 
stars, versions, files, and percentage of each programming 
language type in the project. 

 We filtered the data set for projects having at least two 
versions. At least two versions are necessary to track project 
evolution. Filtering decreased from 601 projects to 146. We 
then examined each project version for Gherkin file updates. If 
a project does not update its Gherkin files, acceptance tests do 
not evolve. We eliminated those non-qualifying projects. Next, 
we eliminated projects without Gherkin file step 
definitions, reducing projects to 61. We eliminated projects 
with fewer than five major-minor versions from those 
remaining 61, leaving 23. Finally, outlier filtering excluded 
two more projects from the remaining 23, leaving 21. We used 
extensive project graphs and charts in our investigation. The 
top four projects with the most major or minor versions are 
chosen. The project names and acronyms are in Table III, and 
their short explanations are given below: 
1) BEWMCHS is a plugin project for a project called Behat, 

which is an open-source Behavior Development 
framework for PHP. 

2) FBR is a framework for defining and using factories 
instead of fixtures. 

3) JEFTBS enables the formatting of bibliographies and 
reading lists and eases the process of citation insertion. 

4) TSCLI is a tool for managing parallel versions of multiple 
SDKs (Software Development Kits). 

Table I and Table II demonstrate the ten attributes we 
utilized throughout the study to characterize the projects we 
chose to analyze. We used JSoup with Selenium to scrape the 
data for those attributes for each version of each project. Data 
was extracted for files that were modified in each version. 
Regarding the revised files, we analyzed them to determine the 
number of line additions and deletions, as well as the quantity 
of source and test code lines that were added and removed. 

 
Table III. Acronyms and names of the selected projects. 

Acronym Project Name 
BEWMHCS Behat extension with most custom helper steps 
FBR Factory Bot Rails 
JEFTBS Jekyll extensions for the blogging scholar 
TSCLI The SDKMAN! Command Line Interface 
 

Additionally, we tracked the number of specific gherkin 
keywords, including Given, Then, When, and Scenario, that 
were added or removed. With the scraped data in hand, we 
built a network of charts to illustrate the interdependencies 
across different projects. Each of the four projects had its own 
set of spider charts and scatter plots. An explanation of each of 
these charts follows. 

A. Scatter Plots Representing Co-evolution 

A scatter plot employs individual data points to illustrate the 
relationship between two distinct numerical variables visually. 
The spatial location of each point on a graph represents the 
numerical magnitude of an individual data point. Based on the 
obtained outcome, doing a correlation study or identifying an 
outlier is possible. Scatterplots are mainly employed to 
observe and illustrate the associations between two numerical 
variables. We used scatterplots to display the cumulative total 
of ATLOC, a cumulative total of SCLOC, differential 
ATLOC, and differential SCLOC values as shown in Figure 1. 

A trend line chart displays the changes in value that happen 
over time. We used trend line charts to display the test code 
update count / all code update count ratio for major and minor 
versions. These charts can display the ratio of test writing 
percentage for each project. We added a curve fitting to both 
display and estimate the project's test evolution. 
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cumulative ATLOC of BEWMHCS cumulative SCLOC of BEWMHCS MMTOA of BEWMHCS 

   
cumulative ATLOC of FBR cumulative SCLOC of FBR MMTOA of FBR 

   
cumulative ATLOC of JEFTBS cumulative SCLOC of JEFTBS MMTOA of JEFTBS 

   
cumulative ATLOC of TSCLI cumulative SCLOC of TSCLI MMTOA of TSCLI 

 
Fig. 1 Scatter plots of cumulative ATLOC and SCLOC for MMV and MMTOA trend of the four selected projects. 

 
These graphs have both negative and positive slopes. The 

reason for that is if the first few versions contain test updates, 
then the curve fitting starts from 1 and converges to the final 
value, which results in a negative slope, and if the first few 
versions do not include any test updates, then the curve fitting 
start from 0 and converges to the final value, thus resulting in 
positive slope. 

Curve fittings can be constructed with the help of these 
points. The straight lines with their respective equations and 
R2 values constitute the fitting curve for this study's projects, 
as evident from the graphs below. The test-to-all ratio of 
upcoming projects and versions can be determined using this 
curve through prediction. 

The difference between the two MMVs is suitable for the 
increment size estimation in differential meaning. In Figure 2, 
we can see that in most of the projects, the size of the ATLOC 
updates is smaller than that of the SCLOC updates. The main 
reason is that it can take a few lines of acceptance test code to 
test a functionality that takes hundreds of lines of code to 
implement. 

B. Spider Charts Representing Co-evolution 

Data with multiple properties can be visualized using spider 
plots. Since each of the four projects in the case study has its 

own set of four characteristics, this usage applies to the data 
presented there. These attributes are as follows: MMTOA, 
AVTOA, AVSATOA, and AVOSOA. To display the spider 
charts precisely, these values have been normalized between 0 
and 1. 

In the graphs shown in Figure 3, we displayed a project’s 
course throughout its lifetime to see how it evolved for the 
above attributes. For each project, we created four intervals 
containing an equal number of versions, and we created a 
spider graph for each of the four intervals. 

1. BEWMHCS From the first graph, we can see that the 
blue graph displays the spider chart in version 2, the orange 
graph displays the spider graph in version 9, the gray line 
displays the spider graph in version 16, and finally yellow 
graph displays the spider graph at version 22. AVTOA 
attribute starts as 0.5, the result of the first two versions 
containing one test update, but converges to 0.8, which can be 
seen from the remaining graphs.  
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differential ATLOC of BEWMHCS differential SCLOC of BEWMHCS 

  
differential ATLOC of FBR differential SCLOC of FBR 

  
differential ATLOC of JEFTBS differential SCLOC of JEFTBS 

  
differential ATLOC of TSCLI differential SCLOC of TSCLI 

 
Fig. 2 Scatter plots of differential ATLOC and SCLOC for MMV of the four selected projects. 

 
The AVOSOA attribute starts at 0.5 and slowly decreases to 

around 0.18. This decrease means that around 18% of the 
updates contain only source code, not test code, and this 18% 
value is consistent throughout the project’s lifetime. The 
AVSATOA attribute starts at 0.5 since the first versions 
introduced source and test code updates or only source code 
updates. Then, this value converges to around 0.8. This 
convergence means that around 80% of the updates contain 
both source and test code, and this 80% value is consistent 
throughout the project’s lifetime. MMTOA attribute value 
starts at 0.5 and converges to around 0.9. This convergence 
displays that tests get updated in major or minor updates, but 
tests rarely get updated in patch updates. 

2. FBR As can be seen from the second graph, the blue 
graph displays the spider graph at version 2, the orange graph 
displays the spider graph at version 19, the gray line displays 
the spider graph at version 36, and finally, the yellow graph 
displays the spider graph at version 51. The AVTOA attribute 
starts as 1, the result of the first two versions containing test 
updates but drops down to 0.4 and lingers there for the 
remainder of the project’s lifetime. 

The AVOSOA attribute starts at 0 and slowly increases up 

to around 0.5. This increase means that around 50% of the 
updates contain only source code, not test code, and this 50% 
value lingers between 0.7 and 0.5 throughout the project’s 
lifetime. The AVSATOA attribute starts at one since the 
second version introduced source and test code updates. Then, 
this value fluctuates between 0.291 and 0.45. This fluctuation 
means that around 45% of the updates contain source and test 
code. MMTOA attribute value starts at one and converges to 
around 0.42. The heavy drop from 1 to 0.42 resulted from the 
first two versions containing test updates, but after these initial 
versions, the lack of test updates resulted in this value being 
much lower. 

3. JEFTBS As can be seen from the third graph, the blue 
graph displays the spider graph at version 2, the orange graph 
displays the spider graph at version 34, the gray line displays 
the spider graph at version 66, and finally yellow graph 
displays the spider graph at version 98. AVTOA attribute 
starts as 0.5, the result of one of the first two versions 
containing test updates, and converges to 0.673. 

The AVOSOA attribute starts at 0 and slowly increases up 
to around 0.295. This increase means that around 30% of the 
updates contain only source and not test codes. The 
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AVSATOA attribute starts at one since the second version 
introduced source and test code updates. Then, this value 
converges to around 0.673. This convergence means that 
around 67% of the updates contain both source and test code, 
and this 67% value is consistent throughout the project’s 
lifetime. MMTOA attribute value starts at 0, the result of the 
first few versions not containing any test updates, and 
converges to around 0.8. 

 

 
BEWMHCS 

 
FBR 

 
JEFTBS 

 
TSCLI 

Fig. 3 Spider charts of the four selected projects. 
 

4. TSCLI. As seen from the last graph, the blue graph 
displays the spider graph in version 2. The orange graph 
displays the spider graph at version 48, the gray line displays 
the spider graph at version 94, and finally, the yellow graph 
displays the spider graph at version 137. AVTOA attribute 
starts as 1, the result of the first two versions containing test 
updates but drops to 0.7 and lingers there for the remainder of 
the project’s lifetime. 

The AVOSOA attribute starts at 0 and slowly increases up 

to around 0.4. This increase means that around 40% of the 
updates contain only source code, not test code, and this 40% 
value is consistent throughout the project’s lifetime. The 
AVSATOA attribute starts at one since the second version 
introduced source and test code updates. Then, this value 
converges to around 0.6. This convergence means that around 
60% of the updates contain both source and test code, and this 
60% value is consistent throughout the project’s lifetime. 
MMTOA attribute value starts at one and converges to around 
0.8. This convergence displays that tests get updated in major 
or minor updates, but in patch updates, tests rarely get 
updated. 

C.  Dashboards Representing Co-evolution 

This section displays a project dashboard that offers all the 
graphs and charts explained throughout the study. These 
dashboards aim to consolidate the analysis of the studied 
projects and their corresponding metrics into a single visual 
representation. This single representation allows for a holistic 
view of the analyzed projects. For instance, in the BEWMCHS 
project’s dashboard in Figure 4, we can see that the differential 
ATLOC chart has a few (0, n) data points, but around 75% of 
the time ATLOC value is non-zero. These zero data points are 
not adjacent, which results in the MMTOA chart having a 
positive slope.  

Similarly, we have many adjacent versions of the FBR 
project in Figure 5, where the differential ATLOC chart has 
many (0, n) data points, most in all projects. This results in the 
MMTOA chart having a negative slope. Also, in the spider 
chart of the FBR project, we can see that the MMTOA 
attribute is 1 for the first graph, and for the remaining spider 
graphs, the MMTOA value is much lower, thus justifying the 
first two graphs. These dashboards allow for the identification 
of similar trends, patterns, or relationships. 

In the JEFTBS project, as shown in Figure 6, the differential 
ATLOC chart has few (0, n) data points. Similarly, the 
differential SCLOC chart has few (0, n) data points. That 
means that the co-evolution of source code and acceptance 
tests has happened in this project. The MMTOA chart having a 
positive slope supports this observation. The spider chart for 
the JEFTBS project in Figure 6 has similar shapes for the 
project's later phases, which means steady software 
development, including acceptance tests, took place. 

Figure 7 illustrates the dynamics of the TSCLI project in 
terms of source code and acceptance evolution. It would be 
simple to conclude that co-evolution does not exist based on 
the negative slope of the MMTOA chart. However, in contrast 
to the BEWMCHS project, the differential SCLOC chart and 
the ATLOC chart for the TSCLI contain a limited number of 
data points (0, n). These values signify that source code and 
acceptance test development is ongoing. Consolidating all the 
charts provides a more comprehensive narrative. 
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cumulative ATLOC of BEWMHCS cumulative SCLOC of BEWMHCS MMTOA of BEWMCHS  

 
differential ATLOC of BEWMHCS differential SCLOC of BEWMHCS Spider Chart of BEWMCHS 

Fig. 4 Dashboard of the BEWMHCS project. 
 

 
cumulative ATLOC of FBR cumulative SCLOC of FBR MMTOA of FBR 

 
differential ATLOC of FBR differential SCLOC of FBR Spider Chart of FBR 

Fig. 5 Dashboard of the FBR project. 
 

V. CONCLUSION 
This research uses the presented visualization method to 

comprehend software evolution dynamics, particularly source 
code modifications and acceptance tests. This study examines 
software repository historical data to understand code update 
patterns and acceptance test tweaks, providing a fresh 
perspective on software development techniques. 

This research extracts and analyzes software repository data, 
focusing on the evolution of source code and acceptance tests. 
Advanced algorithms read and interpret codebase and test 
changes to find trends, anomalies, and essential development 
practice changes. 

The visualization technique developed in this study is easy 

but comprehensive, allowing users to track software project 
evolution readily. It graphically shows how source code 
changes affect acceptance testing. This method helps 
understand the development process and identifies ways to 
improve software development techniques. 

Four open-source projects on GitHub are used in the case 
study to prove that the visualization strategy works. These 
projects were chosen for their active acceptance testing and 
distinct sizes and domains, providing different data for study. 
The study highlights the practicality of the visualization 
method in different projects. 

This analysis attempts to advance software engineering by 
revealing code and testing co-evolution best practices. It aims 
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to give software developers and project managers a solid tool 
to manage the development process better.  
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Fig. 6 Dashboard of the JEFTBS project. 
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Fig. 7 Dashboard of the TSCLI project. 
 
This research emphasizes the relevance of integrated 

development approaches in creating robust and dependable 
software by linking code modifications and acceptance testing. 

We want to add unit tests to the co-evolution visualization 
technique in future research. This extension would improve the 
visibility of the software project development lifecycle. Unit 
tests are essential to software development and provide 
thorough insights into component functionality. These tests, 
acceptance tests, and source code updates help us comprehend 
the software's micro and macroevolution. 

By incorporating this dimension into our study, we aim to 

provide a valuable contribution to the area of software 
engineering. This contribution will manifest as a 
comprehensive tool emphasizing various facets' 
interdependence within the software development process. 
This advanced visualization technique would facilitate the 
implementation of more streamlined, productive, and superior 
software development methodologies across a wide range of 
project settings. 
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