

Abstract—This research investigates how the codebase

and acceptance tests have changed over time using version

control. An essential requirement for this evaluation is

analyzing software development and test cases used in

real-world projects. The data stored in software

repositories is vital for software systems. Access to prior

versions of the program and the ability to differentiate

between adjacent versions using acceptance tests and

source code modifications can provide insight into how the

software evolves. A skillful visualization method is

required to achieve this level of awareness. This research

presents a visualization method for tracking the

concurrent evolution of source code and acceptance tests

within software development projects. The case study

looks at four open-source projects taken from the real

world that have acceptance tests hosted on GitHub. The

proposed visualization method enables the negative slope

on two projects for the source code and acceptance test co-

evolution to be quickly observed, and with such an

observation, the project team can take necessary actions to

change the course of the co-evolution.

Keywords—Mining software repositories, Software

metrics, Software test co-evolution, Software visualization.

I. INTRODUCTION
ISUALIZATIONS can shed light on several facets of the
software development process, and the combination of

multiple visualization approaches can provide a more
comprehensive understanding of the evolution of the codebase
under consideration. This paper proposes a visualization
technique for software projects with the necessary attributes to
monitor source code and acceptance test co-evolution.

Visualizing the progress of source code can aid in
understanding the growth of a codebase. It is possible to
visualize the development of source code through file version
history. Many version control systems, such as Git, monitor
the history of individual file modifications. Viewing the
history of a specific file can give insights into when changes
were made.

Examining the progress of source code in conjunction with
the advancement of acceptance tests offers a comprehensive
perspective on developing a software project. The
development of source code and acceptance tests can be
systematically traced to demonstrate a definitive correlation
between modifications made to the code and corresponding
adjustments in the acceptance tests. This tracing can help us
comprehend how code modifications correspond to changes in
the software's functionality-validating tests. This traceability
can be utilized to visualize the relationship between code
modifications and the corresponding acceptance tests. This
traceability allows us to identify patterns, such as whether code
modifications result in test updates or the creation of new tests.
In addition, we can see how acceptance tests have been
updated to account for new features, modifications, and bugs.

This study presents a novel visualization method that
facilitates the correlation between acceptance test
modifications and corresponding software code changes.
Consequently, it allows for the comprehensive documentation
of the program's evolution and the associated acceptance tests.
This approach guarantees that the project team possesses
comprehensive visibility into the co-evolution of the source
code and acceptance tests. This observability enables the team
to undertake appropriate measures to enhance the quality of
the product and ensure that it aligns with user expectations as
it progresses.

We concretized the proposed approach by using data mined
from GitHub repositories. As explained in Section 4, the
project selection resulted in 21 projects with acceptance tests.
We take the top four projects with maximum major or minor
version counts for the proposed visualization technique.

The structure of this paper is as follows. The second section
is a summary of the relevant literature. The third section
explains the proposed method and describes the instrument
that produced the deliverables. The results and analysis of this
investigation are presented in Section 4. The paper concludes
with Section 5.

Visualization of Source Code and Acceptance
Test Co-evolution
Ali Görkem Yalçın, Tugkan Tuglular

Izmir Institute of Technology,
Urla, Izmir, 35430,

Turkey

Received: January 2, 2023. Revised: September 4, 2023. Accepted: October 22, 20223. Published: November 23, 2023.

V

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2023.17.2 Volume 17, 2023

E-ISSN: 1998-4308 8

II. RELATED WORK
Software development involves more than adding features.

It also requires testing. The software evolves with each release.
Software and test suites should evolve together. If test suites
are not updated for each program change, they become old and
useless. Tests are sensitive to even the slightest changes in the
code, [1]. The software's functionality can be altered by
modifying a boolean variable. Some tests may become
irrelevant due to these modifications, leading to untested
production code. According to [1], a 1% change in program
branches might result in a 16% decrease in test code coverage.
The decay in testing results from fixing bugs, modifying
existing features, adding new features, and reworking existing
code. As a result, updated application test suites must be
patched or regenerated, [2], [3], [4], [5], [6]. Fixing test cases
for every program version can be time-consuming, [7]. It is
essential to comprehend the how and why of test repair for the
process of test evolution, [8].

The study, [4], studied the co-evolution of test and
production code throughout the software's lifecycle, utilizing
versioning system software repositories. The primary area of
emphasis for their research was unit testing. The study utilized
statistical methods to analyze many aspects, such as
production and test code revisions, file changes for each
version, and software test coverage. The researchers
discovered the data mentioned above on two open-source
projects and one industrial project, enabling them to ascertain
the degree of synchronicity between the evolution of test and
production code. Additionally, they could identify whether
there was an increase in test writing activity before significant
software releases. In addition, they proposed the utilization of
visual aids to monitor the progression of software testing and
the evolution of production code. It was discovered that the
implementation of development updates initiated the evolution
of the project in two out of three endeavors. In the other
project, there was a more simultaneous evolution of both the
test and production code. The rate of evolution has never
surpassed the rate of production code development. Before a
major release, these projects lacked a substantial testing phase
for writing tests. Similar to previous studies conducted on this
subject matter, a notable limitation of this study is its analysis
of only three projects. Consequently, the findings derived from
this limited sample size may not apply to a broader population
but only to those projects that align with the characteristics of
the studied cases.

In, [9], the authors presented a methodology aimed at the
automated restoration of unit tests that have become outdated
due to alterations in method declarations or signatures. The
primary area of emphasis was on outdated unit test cases that
resulted in compilation issues. The researchers analyzed 262
iterations of test and production code evolution during the
problem-solving process across 22 open-source projects. Out
of the 22 projects now under review, it was observed that 53%
of the versions did not update the method signature.
Consequently, the test methods associated with these versions

produced no compilation issues. The primary area of their
investigation revolved around test repair. However, throughout
the development and implementation of the repair tool, they
analyzed the program through the process of repository
mining, examining the co-evolution of both test and
production code.

The study, [7], initially examined 80 iterations of software
systems to assess the nature of modifications made by
developers when updating outdated test cases and how
developers repurposed existing test cases to build new and
accurate ones. The researchers extracted data from the
software repositories to analyze the program modifications
between different versions and obtain relevant information.
Their investigation primarily focused on the disparities in
method signatures across different versions. Based on the
provided information, the researchers could ascertain whether
the test case for the specified technique had been modified
and, if so, the modifications' nature.

According to, [5], it is imperative to comprehend the
evolution of test cases in real-world projects to facilitate the
automated repair of such test cases. Without practical
obstacles, the acquired knowledge remains applicable only
within a limited scope of test cases or software projects. The
study incorporated a total of six real-world projects alongside
the implementation of unit testing. The test suite evolution of
these projects was classified into four categories: test repairs,
additions, removals, and refactoring. Statistics regarding the
test changes were furnished based on six real-world initiatives.
The tests that have been refactored and corrected are called
Test Modifications. The process of modifying a deprecated
test case and successfully executing it is commonly referred to
as test repair. 6.4% of the modifications made to the test were
classified as fixes. During the process of test refactoring, the
test undergoes modifications that involve incorporating a new
library and altering variable names. 22.9 percent of the test
modifications conducted were categorized as refactoring. The
test deletions encompassed outdated, challenging-to-rectify,
and unnecessary assessments. Despite the discontinuation of
the test, its functional aspects continue to persist in the
projects, posing challenges in rectification. The test cases were
rewritten entirely due to the perception that they were too
intricate to rectify.

The study, [10], developed a software application called
TestEvol. This tool was specifically built to analyze the
evolutionary patterns of test suites for Java programs and their
associated JUnit test cases. The tool developed by the authors
can analyze two distinct versions of a program with their
corresponding test suites. The purpose of this system is to
detect any changes made to the unit tests and generate
statistical information regarding the influence of these
adjustments on the code coverage.

The study, [11], has developed a software tool that aids in
examining specific software versions, their associated unit
tests, and the progression of code coverage. The technology
was utilized in six pragmatic applications, resulting in

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2023.17.2 Volume 17, 2023

E-ISSN: 1998-4308 9

statistical data from these endeavors. The tool provided by the
authors presents information regarding the co-evolution of unit
tests and source code, the size of software patches concerning
patch type, and statistics on code coverage.

The analysis undertaken by, [12], focused on five open-
source projects to investigate the co-evolution trends between
unit tests and source code components. Their approach's
novelty is in applying associative rule mining techniques to
detect complex co-evolutionary associations. A comprehensive
analysis of the five studies revealed the presence of a total of
12 unique patterns, some of which were seen across multiple
projects. A qualitative analysis was performed to investigate
the statistical data related to the incorporation of the test class
alongside the source class within the same commit, the
subsequent commit without the test class, or the alteration of
the existing test class resulting from adding the new source
class.

The study, [13], also investigated the co-evolution
relationship between source and unit test codes. The research
encompassed a comprehensive set of 61 open-source projects
and analyzed a substantial dataset of over 240,000
contributions from well-known open-source project platforms
such as GitHub and BitBucket. A notable finding indicates that
test maintenance was noticed in more than 50% of the changes
in certain projects. In specific cases, the proportion was less
than 15%. The proportion of commits allocated to the
maintenance of tests in the absence of a particular project
surpassed 68.5%. Additionally, it is essential to acknowledge
that some projects exhibited a deficiency in having a
specialized maintenance system for conducting tests, leading
to a dependence on the project for testing.

The investigation carried out by, [6], analyzed the
progression of unit test suites in eight distinct iterations of Java
systems. The primary aim of this study was to acquire a deeper
understanding of the procedures and methodologies utilized in
developing and refining these test suites. The authors saw a
rise in the size of the test suite over time, as indicated by their
research findings. Additionally, it was observed that the
complexity of the tests stayed consistent throughout the
software's progress. Additionally, it was discovered that the
efficacy of the test suite generally increased as time
progressed. Regarding code coverage, it exhibited a rise in
45.7% of the software versions, maintained stability in 28.6%
of the versions, and experienced a decrease in 25.7%.

All the above research is merely concentrated on source
code and unit tests. The authors conducted the first research on
the source code and acceptance test co-evolution, [14]. This
paper builds on that research by adding a visualization
approach to demonstrate the co-evolution. Moreover, previous
research on source code and unit test co-evolution has not
considered the visualization-related metrics but on tool
development for the examination of co-evolution. All the
values in the above literature would have been visualized even
over time, not as a snapshot.

III. PROPOSED METHOD
Following the metrics at the project level proposed by, [15],

our approach collects the source code's size and the addition
and removal of source code as a line of code. On top of that,
we added the size of the acceptance tests and the addition and
removal of acceptance tests as a line of tests. Unlike, [15], we
propose presenting these values with respect to versions on a
version count line in increasing order. This way, we enable
developers, team leaders, and project managers to observe the
growth and stagnation phases in the software evolution. The
same is valid also for acceptance tests. Moreover, by
visualizing both source code and test code progress
simultaneously, the co-evolution can be observed, and
necessary decisions can be made for project management.
Visualization of the co-evolution of source code and
acceptance gives clues about the quality of the software, which
we believe to be very important.

We also propose to visualize the addition and removal of
source code and acceptance tests as a scatter plot. This way,
we enable developers, team leaders, and project managers to
observe changes and especially improvements version by
version. In our approach, we include version information
concerning semantic versioning, which is categorized as
major, minor, and patch versions. Table I shows our count
metrics, [14]. Furthermore, we developed ratio metrics shown
in Table II, [14].

Table I. Count metrics for the software projects, [14].

Acronym Explanation
VC all Version Count (incl. patches)
MMVC Major-Minor Version Count
SLOC Source Line of Code
TLOS acceptance Test Line of Scenario

On the scatter plot graphs, we also provide a trend line for

the MMTOA metric to indicate the trend of how acceptance
tests have co-evolved with source code and give an idea about
the expectance of future versions. The software development
team can, of course, reverse the trend. To achieve that, they
need to know, and visualization summarizes it well.

Spider charts, often referred to as radar charts, are helpful as
a visualization tool for simultaneously representing and
comparing several aspects of data. Providing a comprehensive
perspective of numerous metrics can assist in concretizing the
strategy of code evolution and acceptance test evolution.
Spider charts offer a visually captivating and intuitive method
for displaying multidimensional data, rendering them well-
suited to analyze the progression of code and acceptance tests
across our ratio metrics.

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2023.17.2 Volume 17, 2023

E-ISSN: 1998-4308 10

Table II. Ratio metrics for the software projects, [14].
Acronym Explanation acceptance Test

Update
Source code
Update

MMTOA for Major-Minor version types, acceptance Test updates / (Over) All updates Always Don’t care
MMSOA for Major-Minor version types, Source code updates / (Over) All updates Don’t care Always
AVOTOA For all Version types, Only acceptance Test updates / (Over) All updates Always Never
AVOSOA For all Version types, Only Source code updates / (Over) All updates Never Always
AVSATOA for All Version types, Source code, And Test updates / (Over) All updates Always Always
AVTOA for All Version types, acceptance Test updates / (Over) All updates Always Don’t care

Progress is tracked over versions through the spider charts,

enabling developers to make well-informed judgments
regarding enhancements to the source code and the acceptance
tests. It is important to note that spider charts should be
utilized alongside other visualization approaches to
comprehend the development process.

IV. CASE STUDY
We selected real-world open-source applications from

GitHub for our analysis. Our first project selection criteria was
identifying projects containing “.feature” Gherkin files. We
found all projects with stars and Gherkin files using GitHub’s
proprietary search engine using the search query: “stars:>1
language: gherkin”. We identified 601 projects that met these
criteria. Using scraping, we then obtained the name, URL,
stars, versions, files, and percentage of each programming
language type in the project.

 We filtered the data set for projects having at least two
versions. At least two versions are necessary to track project
evolution. Filtering decreased from 601 projects to 146. We
then examined each project version for Gherkin file updates. If
a project does not update its Gherkin files, acceptance tests do
not evolve. We eliminated those non-qualifying projects. Next,
we eliminated projects without Gherkin file step
definitions, reducing projects to 61. We eliminated projects
with fewer than five major-minor versions from those
remaining 61, leaving 23. Finally, outlier filtering excluded
two more projects from the remaining 23, leaving 21. We used
extensive project graphs and charts in our investigation. The
top four projects with the most major or minor versions are
chosen. The project names and acronyms are in Table III, and
their short explanations are given below:
1) BEWMCHS is a plugin project for a project called Behat,

which is an open-source Behavior Development
framework for PHP.

2) FBR is a framework for defining and using factories
instead of fixtures.

3) JEFTBS enables the formatting of bibliographies and
reading lists and eases the process of citation insertion.

4) TSCLI is a tool for managing parallel versions of multiple
SDKs (Software Development Kits).

Table I and Table II demonstrate the ten attributes we
utilized throughout the study to characterize the projects we
chose to analyze. We used JSoup with Selenium to scrape the
data for those attributes for each version of each project. Data
was extracted for files that were modified in each version.
Regarding the revised files, we analyzed them to determine the
number of line additions and deletions, as well as the quantity
of source and test code lines that were added and removed.

Table III. Acronyms and names of the selected projects.

Acronym Project Name
BEWMHCS Behat extension with most custom helper steps
FBR Factory Bot Rails
JEFTBS Jekyll extensions for the blogging scholar
TSCLI The SDKMAN! Command Line Interface

Additionally, we tracked the number of specific gherkin
keywords, including Given, Then, When, and Scenario, that
were added or removed. With the scraped data in hand, we
built a network of charts to illustrate the interdependencies
across different projects. Each of the four projects had its own
set of spider charts and scatter plots. An explanation of each of
these charts follows.

A. Scatter Plots Representing Co-evolution

A scatter plot employs individual data points to illustrate the
relationship between two distinct numerical variables visually.
The spatial location of each point on a graph represents the
numerical magnitude of an individual data point. Based on the
obtained outcome, doing a correlation study or identifying an
outlier is possible. Scatterplots are mainly employed to
observe and illustrate the associations between two numerical
variables. We used scatterplots to display the cumulative total
of ATLOC, a cumulative total of SCLOC, differential
ATLOC, and differential SCLOC values as shown in Figure 1.

A trend line chart displays the changes in value that happen
over time. We used trend line charts to display the test code
update count / all code update count ratio for major and minor
versions. These charts can display the ratio of test writing
percentage for each project. We added a curve fitting to both
display and estimate the project's test evolution.

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2023.17.2 Volume 17, 2023

E-ISSN: 1998-4308 11

cumulative ATLOC of BEWMHCS cumulative SCLOC of BEWMHCS MMTOA of BEWMHCS

cumulative ATLOC of FBR cumulative SCLOC of FBR MMTOA of FBR

cumulative ATLOC of JEFTBS cumulative SCLOC of JEFTBS MMTOA of JEFTBS

cumulative ATLOC of TSCLI cumulative SCLOC of TSCLI MMTOA of TSCLI

Fig. 1 Scatter plots of cumulative ATLOC and SCLOC for MMV and MMTOA trend of the four selected projects.

These graphs have both negative and positive slopes. The

reason for that is if the first few versions contain test updates,
then the curve fitting starts from 1 and converges to the final
value, which results in a negative slope, and if the first few
versions do not include any test updates, then the curve fitting
start from 0 and converges to the final value, thus resulting in
positive slope.

Curve fittings can be constructed with the help of these
points. The straight lines with their respective equations and
R2 values constitute the fitting curve for this study's projects,
as evident from the graphs below. The test-to-all ratio of
upcoming projects and versions can be determined using this
curve through prediction.

The difference between the two MMVs is suitable for the
increment size estimation in differential meaning. In Figure 2,
we can see that in most of the projects, the size of the ATLOC
updates is smaller than that of the SCLOC updates. The main
reason is that it can take a few lines of acceptance test code to
test a functionality that takes hundreds of lines of code to
implement.

B. Spider Charts Representing Co-evolution

Data with multiple properties can be visualized using spider
plots. Since each of the four projects in the case study has its

own set of four characteristics, this usage applies to the data
presented there. These attributes are as follows: MMTOA,
AVTOA, AVSATOA, and AVOSOA. To display the spider
charts precisely, these values have been normalized between 0
and 1.

In the graphs shown in Figure 3, we displayed a project’s
course throughout its lifetime to see how it evolved for the
above attributes. For each project, we created four intervals
containing an equal number of versions, and we created a
spider graph for each of the four intervals.

1. BEWMHCS From the first graph, we can see that the
blue graph displays the spider chart in version 2, the orange
graph displays the spider graph in version 9, the gray line
displays the spider graph in version 16, and finally yellow
graph displays the spider graph at version 22. AVTOA
attribute starts as 0.5, the result of the first two versions
containing one test update, but converges to 0.8, which can be
seen from the remaining graphs.

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2023.17.2 Volume 17, 2023

E-ISSN: 1998-4308 12

differential ATLOC of BEWMHCS differential SCLOC of BEWMHCS

differential ATLOC of FBR differential SCLOC of FBR

differential ATLOC of JEFTBS differential SCLOC of JEFTBS

differential ATLOC of TSCLI differential SCLOC of TSCLI

Fig. 2 Scatter plots of differential ATLOC and SCLOC for MMV of the four selected projects.

The AVOSOA attribute starts at 0.5 and slowly decreases to

around 0.18. This decrease means that around 18% of the
updates contain only source code, not test code, and this 18%
value is consistent throughout the project’s lifetime. The
AVSATOA attribute starts at 0.5 since the first versions
introduced source and test code updates or only source code
updates. Then, this value converges to around 0.8. This
convergence means that around 80% of the updates contain
both source and test code, and this 80% value is consistent
throughout the project’s lifetime. MMTOA attribute value
starts at 0.5 and converges to around 0.9. This convergence
displays that tests get updated in major or minor updates, but
tests rarely get updated in patch updates.

2. FBR As can be seen from the second graph, the blue
graph displays the spider graph at version 2, the orange graph
displays the spider graph at version 19, the gray line displays
the spider graph at version 36, and finally, the yellow graph
displays the spider graph at version 51. The AVTOA attribute
starts as 1, the result of the first two versions containing test
updates but drops down to 0.4 and lingers there for the
remainder of the project’s lifetime.

The AVOSOA attribute starts at 0 and slowly increases up

to around 0.5. This increase means that around 50% of the
updates contain only source code, not test code, and this 50%
value lingers between 0.7 and 0.5 throughout the project’s
lifetime. The AVSATOA attribute starts at one since the
second version introduced source and test code updates. Then,
this value fluctuates between 0.291 and 0.45. This fluctuation
means that around 45% of the updates contain source and test
code. MMTOA attribute value starts at one and converges to
around 0.42. The heavy drop from 1 to 0.42 resulted from the
first two versions containing test updates, but after these initial
versions, the lack of test updates resulted in this value being
much lower.

3. JEFTBS As can be seen from the third graph, the blue
graph displays the spider graph at version 2, the orange graph
displays the spider graph at version 34, the gray line displays
the spider graph at version 66, and finally yellow graph
displays the spider graph at version 98. AVTOA attribute
starts as 0.5, the result of one of the first two versions
containing test updates, and converges to 0.673.

The AVOSOA attribute starts at 0 and slowly increases up
to around 0.295. This increase means that around 30% of the
updates contain only source and not test codes. The

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2023.17.2 Volume 17, 2023

E-ISSN: 1998-4308 13

AVSATOA attribute starts at one since the second version
introduced source and test code updates. Then, this value
converges to around 0.673. This convergence means that
around 67% of the updates contain both source and test code,
and this 67% value is consistent throughout the project’s
lifetime. MMTOA attribute value starts at 0, the result of the
first few versions not containing any test updates, and
converges to around 0.8.

BEWMHCS

FBR

JEFTBS

TSCLI

Fig. 3 Spider charts of the four selected projects.

4. TSCLI. As seen from the last graph, the blue graph
displays the spider graph in version 2. The orange graph
displays the spider graph at version 48, the gray line displays
the spider graph at version 94, and finally, the yellow graph
displays the spider graph at version 137. AVTOA attribute
starts as 1, the result of the first two versions containing test
updates but drops to 0.7 and lingers there for the remainder of
the project’s lifetime.

The AVOSOA attribute starts at 0 and slowly increases up

to around 0.4. This increase means that around 40% of the
updates contain only source code, not test code, and this 40%
value is consistent throughout the project’s lifetime. The
AVSATOA attribute starts at one since the second version
introduced source and test code updates. Then, this value
converges to around 0.6. This convergence means that around
60% of the updates contain both source and test code, and this
60% value is consistent throughout the project’s lifetime.
MMTOA attribute value starts at one and converges to around
0.8. This convergence displays that tests get updated in major
or minor updates, but in patch updates, tests rarely get
updated.

C. Dashboards Representing Co-evolution

This section displays a project dashboard that offers all the
graphs and charts explained throughout the study. These
dashboards aim to consolidate the analysis of the studied
projects and their corresponding metrics into a single visual
representation. This single representation allows for a holistic
view of the analyzed projects. For instance, in the BEWMCHS
project’s dashboard in Figure 4, we can see that the differential
ATLOC chart has a few (0, n) data points, but around 75% of
the time ATLOC value is non-zero. These zero data points are
not adjacent, which results in the MMTOA chart having a
positive slope.

Similarly, we have many adjacent versions of the FBR
project in Figure 5, where the differential ATLOC chart has
many (0, n) data points, most in all projects. This results in the
MMTOA chart having a negative slope. Also, in the spider
chart of the FBR project, we can see that the MMTOA
attribute is 1 for the first graph, and for the remaining spider
graphs, the MMTOA value is much lower, thus justifying the
first two graphs. These dashboards allow for the identification
of similar trends, patterns, or relationships.

In the JEFTBS project, as shown in Figure 6, the differential
ATLOC chart has few (0, n) data points. Similarly, the
differential SCLOC chart has few (0, n) data points. That
means that the co-evolution of source code and acceptance
tests has happened in this project. The MMTOA chart having a
positive slope supports this observation. The spider chart for
the JEFTBS project in Figure 6 has similar shapes for the
project's later phases, which means steady software
development, including acceptance tests, took place.

Figure 7 illustrates the dynamics of the TSCLI project in
terms of source code and acceptance evolution. It would be
simple to conclude that co-evolution does not exist based on
the negative slope of the MMTOA chart. However, in contrast
to the BEWMCHS project, the differential SCLOC chart and
the ATLOC chart for the TSCLI contain a limited number of
data points (0, n). These values signify that source code and
acceptance test development is ongoing. Consolidating all the
charts provides a more comprehensive narrative.

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2023.17.2 Volume 17, 2023

E-ISSN: 1998-4308 14

cumulative ATLOC of BEWMHCS cumulative SCLOC of BEWMHCS MMTOA of BEWMCHS

differential ATLOC of BEWMHCS differential SCLOC of BEWMHCS Spider Chart of BEWMCHS

Fig. 4 Dashboard of the BEWMHCS project.

cumulative ATLOC of FBR cumulative SCLOC of FBR MMTOA of FBR

differential ATLOC of FBR differential SCLOC of FBR Spider Chart of FBR

Fig. 5 Dashboard of the FBR project.

V. CONCLUSION
This research uses the presented visualization method to

comprehend software evolution dynamics, particularly source
code modifications and acceptance tests. This study examines
software repository historical data to understand code update
patterns and acceptance test tweaks, providing a fresh
perspective on software development techniques.

This research extracts and analyzes software repository data,
focusing on the evolution of source code and acceptance tests.
Advanced algorithms read and interpret codebase and test
changes to find trends, anomalies, and essential development
practice changes.

The visualization technique developed in this study is easy

but comprehensive, allowing users to track software project
evolution readily. It graphically shows how source code
changes affect acceptance testing. This method helps
understand the development process and identifies ways to
improve software development techniques.

Four open-source projects on GitHub are used in the case
study to prove that the visualization strategy works. These
projects were chosen for their active acceptance testing and
distinct sizes and domains, providing different data for study.
The study highlights the practicality of the visualization
method in different projects.

This analysis attempts to advance software engineering by
revealing code and testing co-evolution best practices. It aims

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2023.17.2 Volume 17, 2023

E-ISSN: 1998-4308 15

to give software developers and project managers a solid tool
to manage the development process better.

cumulative ATLOC of JEFTBS cumulative SCLOC of JEFTBS MMTOA of JEFTBS

differential ATLOC of JEFTBS differential SCLOC of JEFTBS Spider Chart of JEFTBS

Fig. 6 Dashboard of the JEFTBS project.

cumulative ATLOC of TSCLI cumulative SCLOC of TSCLI MMTOA of TSCLI

differential ATLOC of TSCLI differential SCLOC of TSCLI Spider Chart of TSCLI

Fig. 7 Dashboard of the TSCLI project.

This research emphasizes the relevance of integrated

development approaches in creating robust and dependable
software by linking code modifications and acceptance testing.

We want to add unit tests to the co-evolution visualization
technique in future research. This extension would improve the
visibility of the software project development lifecycle. Unit
tests are essential to software development and provide
thorough insights into component functionality. These tests,
acceptance tests, and source code updates help us comprehend
the software's micro and macroevolution.

By incorporating this dimension into our study, we aim to

provide a valuable contribution to the area of software
engineering. This contribution will manifest as a
comprehensive tool emphasizing various facets'
interdependence within the software development process.
This advanced visualization technique would facilitate the
implementation of more streamlined, productive, and superior
software development methodologies across a wide range of
project settings.

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2023.17.2 Volume 17, 2023

E-ISSN: 1998-4308 16

References
[1] S. Elbaum, D. Gable, and G. Rothermel, “The impact of

software evolution on code coverage information,” in
Proceedings IEEE International Conference on software

maintenance. ICSM 2001, 2001, pp. 170–179.
[2] B. Daniel, V. Jagannath, D. Dig, and D. Marinov,

“ReAssert: Suggesting Repairs for Broken Unit Tests,” in
2009 IEEE/ACM International Conference on

Automated Software Engineering, Auckland, New
Zealand: IEEE, Nov. 2009, pp. 433–444. doi:
10.1109/ASE.2009.17.

[3] B. Daniel, T. Gvero, and D. Marinov, “On test repair
using symbolic execution,” in Proceedings of the 19th

International Symposium on Software testing and

analysis - ISSTA ’10, Trento, Italy: ACM Press, 2010, p.
207. doi: 10.1145/1831708.1831734.

[4] A. Zaidman, B. Van Rompaey, A. Van Deursen, and S.
Demeyer, “Studying the co-evolution of production and
test code in open source and industrial developer test
processes through repository mining,” Empirical

Software Engineering, vol. 16, no. 3, pp. 325–364, 2011.
[5] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths

and realities of test-suite evolution,” in Proceedings of

the ACM SIGSOFT 20th International Symposium on the

Foundations of Software Engineering - FSE ’12, Cary,
North Carolina: ACM Press, 2012, p. 1. doi:
10.1145/2393596.2393634.

[6] N. Alsolami, Q. Obeidat, and M. Alenezi, “Empirical
analysis of object-oriented software test suite evolution,”
International Journal of Advanced Computer Science

and Applications, vol. 10, no. 11, 2019.
[7] M. Mirzaaghaei, F. Pastore, and M. Pezzè, “Supporting

test suite evolution through test case adaptation,” in 2012

IEEE Fifth International Conference on software testing,

verification and validation, 2012, pp. 231–240.
[8] E. J. Rapos and J. R. Cordy, “SimEvo: A toolset for

simulink test evolution & maintenance,” in 2018 IEEE

11th international conference on software testing,

verification and validation (ICST), 2018, pp. 410–415.
[9] M. Mirzaaghaei, F. Pastore, and M. Pezze,

“Automatically repairing test cases for evolving method
declarations,” in 2010 IEEE International Conference on

Software Maintenance, 2010, pp. 1–5.
[10] L. S. Pinto, S. Sinha, and A. Orso, “TestEvol: A tool for

analyzing test-suite evolution,” in 2013 35th

International Conference on Software Engineering

(ICSE), San Francisco, CA, USA: IEEE, May 2013, pp.
1303–1306. doi: 10.1109/ICSE.2013.6606703.

[11] P. Marinescu, P. Hosek, and C. Cadar, “Covrig: a
framework for the analysis of code, test, and coverage
evolution in real software,” in Proceedings of the 2014

International Symposium on Software Testing and

Analysis - ISSTA 2014, San Jose, CA, USA: ACM Press,
2014, pp. 93–104. doi: 10.1145/2610384.2610419.

[12] C. Marsavina, D. Romano, and A. Zaidman, “Studying
Fine-Grained Co-evolution Patterns of Production and
Test Code,” in 2014 IEEE 14th International Working

Conference on Source Code Analysis and Manipulation,

Victoria, BC, Canada: IEEE, Sep. 2014, pp. 195–204.
doi: 10.1109/SCAM.2014.28.

[13] S. Levin and A. Yehudai, “The Co-evolution of Test
Maintenance and Code Maintenance through the Lens of
Fine-Grained Semantic Changes,” in 2017 IEEE

International Conference on Software Maintenance and

Evolution (ICSME), Shanghai: IEEE, Sep. 2017, pp. 35–
46. doi: 10.1109/ICSME.2017.9.

[14] A. G. Yalçın and T. Tuğlular, “Studying the Co-
Evolution of Source Code and Acceptance Tests,”
International Journal of Software Engineering and

Knowledge Engineering, 2023.
[15] M. Lanza, “The evolution matrix: Recovering software

evolution using software visualization techniques,”
presented at the Proceedings of the 4th International
workshop on principles of Software Evolution, 2001, pp.
37–42.

Contribution of individual authors to the creation of a

scientific article (ghostwriting policy)

- Tugkan Tuglular came out with the idea of the paper and the
proposed method. The proposed method has been improved by
both authors.
- Ali Gorkem Yalcin has implemented the proposed
visualization method and collected the data.

Sources of funding for research presented in a scientific

article or scientific article itself

No funding was received for conducting this study.

Conflicts of Interest

The authors have no conflicts of interest to declare that are
relevant to the content of this article.

Creative Commons Attribution License 4.0 (Attribution

4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2023.17.2 Volume 17, 2023

E-ISSN: 1998-4308 17

https://creativecommons.org/licenses/by/4.0/deed.en_US

