
 

Abstract – It is critical to administer the correct dose of 

medications during the treatment regimen. Dosing 

inappropriately might worsen the illness or possibly result 

in death. The first and only important approach in clinical 

drug development is to determine an individual's precise 

dose. Pharmacokinetic variability is characterized by 

interindividual changes in anatomical and physiological 

variables. Population modeling requires a strong 

foundation of processes to ensure accurate data, 

appropriate computational platforms, sufficient resources, 

and good communication are all required. This paper 

examines the various methods for developing 

pharmacokinetic and pharmacodynamic models. There are 

a variety of ways that can be used to build population 

modelling: Nonlinear Mixed-effects Modeling, Bayesian 

population pharmacokinetic (PBPK) models, Physiological 

covariate modeling, Visual predictive check are some of 

the modeling strategies that have been discussed here. The 

evolution of modeling software is explored in this article. 

The greatest way for determining the optimal treatment 

for a patient with a certain ailment is to optimize drugs 

through optimum control. Different control techniques are 

also explored in this article. 

 

Keywords— Precision dosing, Population 

pharmacokinetic models, mixed-effects modeling, Grey-

box modeling, optimal therapy  

I.  INTRODUCTION 

It's crucial to understand how a medicine impacts the 

body; To comprehend how a drug flows humans and animals’ 

 

flowing intravenous, oral dosing, transdermal delivery, 

etc. in humans and animals’ the usage of mathematical models 

is employed. The modelling and simulation technique is quite 

useful in terms of drug discovery and development, but it fails 

at the point of treatment in the clinic The fundamental focal 

point of the survey paper is to abridge the latest mathematical 
 

modeling methods adopted in pharmacokinetic/ 

pharmacodynamic modeling and various approaches used in 

the population pharmacokinetic while considering many 

varieties of data for analysis.  

Precision dosing[1] is another significant aspect unseen in 

pharmacokinetic/ pharmacodynamic modeling. For precision 

dosing, vital entities required are the system data, drug data, 

and trial design. If the different combinations of these three 

data companies, the result will be the right dose for the right 

patient at right time. This will be the solution for the improved 

use of modeling and simulation in health care. 

Pharmacokinetic (PK)[2]describes the motion of drugs 

within the body, how the body deals with the drug. It was used 

to describe how medicines moved into, though, and out of the 

body. The key steps of pharmacokinetics are absorption, 

distribution, metabolism, and excretion [ADME], and this 

process is complicated.  Many factors influence 

pharmacokinetics, including drug molecular characteristics, 

blood flow to and volume of various tissues, permeability of 

various membranes, tissue composition, and tissue affinity for 

the administered substance [3]. Pharmacokinetic models are 

the simplified description of true biological processes and this 

can be used for data reduction and interpolation.[4] These 

models comprehend mathematical quantity; the major value is 

derived from their ability to extrapolate relationships beyond 

the existing data.  

Pharmacodynamics (PD) is a term that explains the strength of 

a drug in relation to its concentration in a bodily fluid, such as 

blood. ‘What the drug does to the body. Pharmacodynamic 

modelling is required for the calculation of the parameters that 

describe the pharmacological effect, and it is associated to the 

profile of the drug concentration. The precision of the PK 

counterpart is crucial to the correctness of the PD model. The 

body’s biological response in terms of biochemical and 

molecular interaction is investigated in pharmacodynamic 

(PD). It gives prominence to the dose-response relationship 

The link between drug concentration and effect, in other 

words. Sub-molecular, molecular, cellular, tissue/organ, and 

whole-body studies of PD have also been conducted [5]. 

For the development and approval of each drug, the exposure-
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response relationship of PK/PD plays a prime role. PK/PD 

data contribute to quite a bit of what is on a medication bundle 

embed. 

  
In preclinical research, PK/PD, as well as physiological 

modelling and allometric scaling, are used to evaluate 

toxicokinetic data. It's also utilised to extrapolate the effects of 

animals on people [5]. The PK/PD analysis is used for 

characterizing drug exposure, dosage requirement prediction, 

assessing the changes in dosage requirement, estimating the 

rate of elimination and rate of absorption, assessing the 

relative bioavailability/ bioequivalence, and establishing safety 

margins and efficacy characteristics. 

 

This paper reviews the different modeling techniques used for 

the development of pharmacokinetic and pharmacodynamic 

models, different approaches for the development of 

population pharmacokinetic modeling, and drug optimization.  

The following is a description of the paper's structure. The 

importance of pharmacokinetics and pharmacodynamics is 

discussed in Section 1. In section 2, various methods for 

developing pharmacokinetic and pharmacodynamic models 

have been discussed. Section 3 gives a general description of 

the population pharmacokinetic models (Popp K) and the 

different software used for its analysis. Section 4 gives a 

review of the procedure for optimal control along with the 

different configurations of optimal control for drug 

optimization. Finally, section 5 provides conclusions for the 

paper. 
 

II. PHARMACOKINETIC AND PHARMACODYNAMIC 

MODELING TECHNIQUES 

The technique of PK/PD modelling integrates the two 

traditional pharmacological sciences. It is a series of 

mathematical expressions that combines a pharmacokinetic 

and pharmacodynamic model factor to represent the time 

course of effect strength in response to the delivery of a 

pharmaceutical dose. PK/PD relationships can be defined by 

simple equations beneath steady-state conditions which 

include constant impact model, linear model, Emax version, 

sigmoid Emax version, and log-linear model [2],[4]. Different 

methods adopted for the modeling of pharmacokinetic and 

pharmacodynamic modeling are discussed below. 

 

A. Compartmental Models 

Compartmental models feature several peripheral 

compartments that are connected to at least one important 

compartment, but no anatomical space or physiological 

volume. Based on the system norms the mathematical 

expression that determines the drug concentration inside every 

compartment, the method can be one or multiple 

compartmental. The role of linear, time-invariant, and 

nonlinear compartment models is discussed in [6]. Because all 

organs and tissues are consolidated into a single huge bucket, 

referred to as the central compartment, drug recirculation is 

not possible in the single-compartment model. From outside, 

the substance enters the middle compartment, then exits the 

central compartment. There will be a peripheral compartment 

as well as a center compartment in the two-compartment 

variant. Here the plasma concentration of the drug decays by 

multiple exponential phases[7]. The usefulness of the two 

compartmental models is in [8]. The three compartmental 

models will include the central compartment (which represents 

plasma), the highly perfused compartment (which depicts 

organs and tissues that are heavily perfused by blood), and the 

hardly perfused compartment (represents the organs and 

tissues scarcely perfused by blood)[9], [10]. 

Multicompartment models can be used to study the 

relationship between drug concentration in the plasma (or 

serum) and the intensity of a pharmacologic activity. 

These models are used to forecast the concentration of a 

drug in any body fluid or tissue at any given moment. Flexible 

approaches in the compartmental model are postulated in [5].  
The illustration of drugs distribution using mathematical 

compartment modeling has numerous limitations[11]. 

 

 

B. Noncompartmental Analysis (NCA) 

Noncompartmental analysis (NCA) strategies are model-

independent, they are not subject to assumptions about body 

compartments i.e., any specific compartmental model either 

for drug or metabolite not required. It depends upon the 

algebraic equations to estimate PK parameters. The linear 

trapezoidal rule and the Log-linear trapezoidal rule are used to 

calculate the area under a plasma-concentration curve. In zero-

order kinetics, when plasma concentrations drop linearly with 

time, the linear trapezoidal technique will work. In the log-

linear trapezoidal rule, large sample intervals are permissible. 

This method is more optimal within the first order[12]. NCA 

proves faster and more cost-efficient to conduct, especially 

when compared to more complex compartmental analyses. 

Thus Non-compartmental analysis is used to evaluate the 

exposure time of a drug and it is a simple and quick method 

[13]. 

 

C. Physiological Models 

Physiologically based pharmacokinetic (PBPK) models 

use blood flow rates and drug binding qualities to numerous 

tissues and circulating proteins to reflect the distribution of 

drugs between the central compartment and specific organs 

and tissues. PKPB models feature several compartments that 

correspond to different organs or tissues in the body and are 

parameterized based on known physiology [14]. These 

compartments are connected by flow rates that are similar to 

those of the circulating blood system. Common PK properties 

such as clearance, distribution volume, and effective half-life 

are estimated using these models, as well as more empirical 

models. On the other hand, these more physiologically relevant 

models provide a quantitative mechanistic framework within 

which scaled drug-specific parameters (using IVIVE 

techniques) can be used to predict the plasma and, more 

importantly, tissue concentration-time profiles of new drugs 

after i.v. or oral administration. If the target group's 

physiological characteristics are known, they can be used to 

extrapolate a dose in healthy volunteers to a dose in a sick 

population. [15] The physiological parameters, whose values 
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are specified a priori and independent of kinetic data, are used 

to describe the distribution. A few parameters, usually the one 

representing metabolism, are tweaked until the data fits 

comfortably. The body is separated into five or more divisions 

in most PBPK versions. [16] 

 

D. Grey-box Pharmacokinetic/Pharmacodynamic 

Systems Modeling 

  

Modeling in a grey box aims to estimate model parameters 

by combining physiological knowledge with data. Grey-box 

modeling entails the use of stochastic differential equations 

(SDEs). In differential equations, disturbances, 

unmeasured/unknown system inputs, and unmodeled system 

dynamics all represent a stochastic term [17]. 

 In a Gray-Box model, the state-space technique is utilized 

to represent the relationship between input and output signals 

in a dynamical system. In a continuous-time state-space model, 

internal parametric representation of input and output offers a 

precise physiological meaning for the parameters. The PK and 

PD parameters are effectively evaluated simultaneously, 

defining the uptake, delivery, and effect of the two different 

types of insulin. Grey-box modelling is used to investigate the 

influence of insulin on glucose disappearance, and the PK and 

PD parameters are effectively evaluated simultaneously, 

defining the uptake, delivery, and effect of the two different 

types of insulin in [18]. [19] describes glucoregulatory grey-

box models based on SDE. The final model provides a 

comprehensive and well-supported explanation of the data, as 

well as far more precise and reasonable forecasts. 

 

III. POPULATION PHARMACOKINETICS 

MODELLING 

Drug development necessitates modelling. Population 

modelling is a complicated process that necessitates a solid set 

of rules to assure reliable data, proper computational 

platforms, sufficient resources, and good communication. 

Pharmacokinetic variability is caused by interindividual 

changes in anatomical and physiological features. 

The only clear goal in clinical drug development is to 

determine an individual's precise dose. Population 

pharmacokinetic models (Popp K) are used to demonstrate the 

temporal history of drug exposure in patients and to identify 

wellsprings of variability in the quiet introduction. This can be 

used to test different dosing regimens. When building a 

population pharmacokinetic model, five major factors must be 

considered: I data, (ii) structural models, (iii) statistical model, 

(iv) covariate models, and (v) modelling software. [19], [20], 

[21]. The normal concentration-time course within a 

population is described by structural models. Statistical models 

account for "unprecedented" (random) variation in population 

concentration. Variability anticipated by subject characteristics 

is explained by covariate models (covariates).  

To analyze data, specialized data analysis techniques 

and software are needed in the phase-III clinical trials, for drug 

development using Pharmacokinetic-pharmacodynamic 

modeling. History for the advancement of population modeling 

software is given in Table 3.1 [22], [23],[24], [25] 

 

Sl. 

No 

Year Activity Name Remark 

1 1972 Conceptualizat

ion 

 

The concept and the FO 

method were announced 

2 1977 The first case 

study 

Application to digoxin data 

3 1980 Announcemen

t of NONMEN 

An IBM specific software 

intended for population 

kinetics 

4 1984 NONMEM 77 A portable version of the 

software 

5 1989 NONMEM III An improved user interfaces 

with the NMTRAN front 

end. NONMEM Users 

Guide published 

6 1989 BUGS 

software group 

forms 

Different 

Different method: Markov 

chain Monte Carlo method 

7 1991 USC*PACK 

 

Different method: 

nonparametric population 

pharmacokinetic modeling 

(NPEM) 

8 1992 NONMEM IV New methodological 

developments, i.e., FOCE. 

NONMEM Users Guide 

updated 

9 1992 Publication 

with NPEM 

First publication using 

NPEM method 

10 1994 NONMEM 

Users guide 

New updated versions of 

NONMEM Users Guide 

including Alison Boeckmann 

as co-author 

11 1998 NONMEM V Advanced features including 

mixtures, improved 

installation, HELP guide 

12 2001 Change in 

license holder 

NONMEM 

NONMEM V licensed by 

Globomax 

13 2001 Winbugs 

publication 

First publication using 

Winbugs 

14 2001 PFIM Appeared in R and Matlab 

15 2002 Publication 

with PKBUGs 

Winbugs application 

designed for 

pharmacokinetic models 

16 2003 PkStaMp, 

PopDes, 

PopED, and 

POPT 

Software tools based on 

Matlab 

17 2003 Monolix 

Group Forms 

Different method: stochastic 

approximation expectation 

maximization (SAEM) 

2003 

18 2004 WinNonMix 

publication 

Population modeling 

software with graphical user 
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interface 

19 2004 NONMEM VI Informal discussions at 

PAGE 2004 of the advanced 

stage of beta-testing of 

NONMEM VI 

20 2006 Monolix 

publications 

First publications using 

Monolix 

21 2009 Phoenix 

NLME 

User-friendly GUI 

22 2010 NONMEM 7 New methods: Bayes, 

SAEM, and others, parallel 

processing enabled 

23 2012 Monolix 4.1 Full-script version 

(MLXTRAN, XML) and/or 

user-friendly GUI 

24 2017 PK-Sim  Open-source platform for 

PBPK modelling[26] 

25 2018 gPKPDSim  MATLAB based GUI (open 

source) application [27] 

26 2019 Stan and GNU 

MCSim 

Bayesian software inference 

tool [28] 

Table 3.1 

Detailed examples of PBPK model code conversions from 

acslX is compatible with the other three software programmes, 

including Berkeley Madonna, MATLAB, and the R language 

[29]. The fundamental aspect of population pharmacokinetic 

and its important deliberations while planning a population 

pharmacokinetic analysis are given in [25]. There is a need 

and try to standardize and develop the right practices by using 

modeling in various fields such as business, regulatory, 

academics, and clinical research as a whole.  

The result of the modeling and the numerous software 

programs are linked to various mathematical and 

computational resources similar to the several methods used in 

population modeling. An effort to provide insight into these 

methods is given below. 

 

1). Nonlinear Mixed-effects Modeling 

Nonlinear mixed-effects models have become the 

major research framework for population-based 

pharmacometrics modelling, and NONMEM has become the 

gold standard software kit for implementing these approaches. 

The nonlinear relationship between the dependent variable 

(e.g., concentration) and the model parameters and 

independent variable is referred to as "nonlinear". "Mixed-

effects" relates to parameterization: "Fixed effects" refers to 

variables that are constant across individuals., while "random 

effects" refers to parameters that do vary across individuals. 

[30]Describes the basic principles and assumptions of the 

nonlinear mixed-effects model (NLME) and compares it to the 

linear mixed-effects model (LME).  

An ordinary differential equation (ODEs) based 

mixed-effects modeling package (nlmeODE) for population 

PK/PD research will provide an accurate parameter estimate.  

Nonlinear mixed-effects models for repeated 

measures are a hierarchical model that combines both fixed 

and random effects to account for unexplained inter- and intra-

individual variability. 

The intra-individual (residual) variability reflecting the 

difference between the individual projected values and the 

observations is modelled as in the first-stage model. 

 
                          

(1) 

 

Where   is the jth for the ith individual, f (·) a non-linear 

function of a parameter vector that is unique to each person  

specific to that individual, and predictor vector , N reflects 

the number of individuals, the number of measurements for 

each individual i and the residual error terms  are assumed 

independently and identically with a mean of zero and 

variance of σ2, distributed normal random variables are 

created.  

The model connects the various parameter of persons in the 

second stage of the hierarchy, i.e.                      

            (2) 

 

Where  and  are the fixed-effects vector's β and random-

effects vector's  design matrices, respectively. The random-

effects vector , which consists of k zero-mean variables with 

variance-covariance matrix that are thought to be independent 

and identically distributed Ψ, is used to model inter-individual 

variability. i and j are independent of the residual error terms 

 and bi. 

 

On the basis of the marginal density of y, the parameters in 

mixed-effects models are estimated using maximum likelihood 

(ML) or restricted maximum likelihood (REML). [31]. 

Individualization and Prediction of NLME using three 

different methods like Within-subjects and Between- Subjects 

variance, Maximum-Likelihood Estimation and Mixed -Effects 

Modelling and Bayesian Estimation for Predictive Modelling 

are discussed in[32]. The two population analyses used to 

determine the structural model are NONMEM (nonlinear 

mixed-effect modelling) and NPML (nonlinear principal 

component analysis). (nonparametric maximum-likelihood), 

Estimate population mean metrics like clearance and 

interindividual variability, then search for demographic factors 

that influence them. [33]. Nonlinear Mixed-Effects Model is 

Based on Stochastic Differential Equation,[34] The likelihood 

function is calculated and approximated by combining the 

extended Kalman filter with Bayesian judgments. 

 

2). Bayesian population pharmacokinetic (PBPK) models 

  Using a mixed Bayesian population PBPK technique, 

physiologically relevant interindividual variability is 

characterized and identified. The method is based on a 

hierarchical model that represents experimental data at the 

individual level while also identifying physiological parameter 

variability at the population level. Large amounts of prior 

information about the population's physiology can be added 

when employing a Bayesian method for a model approach. 

The Bayesian population PBPK technique calibrates such 

knowledge to experimental results, resulting in a posterior 

distribution that contains all information about all parameters 
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in the population and their variance.[35]. 

The posterior distribution is expressed as follows in 

Bayes theorem,  

            (3) 

Where,  prior probability,  is the probability of 

the experimental results, The arbitrary experimental data is 

denoted by Y, and ω, arbitrary parameters. In the Individual 

Bayesian pharmacokinetic modeling approach, the model 

validation is carried out giving the estimate of the 

pharmacokinetic parameters in cases of gentamicin injection, 

this method has 100% accuracy. So that the drug dosage was 

carried out individually, giving the right dose for the right 

person[36]. Features of different models evaluated using 

Bayesian population pharmacokinetic (PBPK) models are 

listed in Table 2 

 

Ref Model evaluated Features 

[37] Multiroute 

chloroform 

exposure 

This helps in the optimization 

of certain PKPB parameters in 

the population. It can be used 

to calibrate models. 

[38] Marine mammals The posterior distribution was 

computed using the previous 

results, and the PBPK model 

has been updated. It assists in 

the estimate of the population 

and vulnerability of protected 

marine mammal species. 

[39] Florfenicol 

residues in the 

tilapia tissues 

It helps to improve the 

characterization of ambiguity 

and generate scenario-specific 

values 

[40],[41] Interindividual 

variability 

Can contribute to improved 

drug development safety and 

effectiveness, as well as 

increased trust in personalized 

medicine efforts. 

[42] Perfluorooctane 

sulfonate in 

multiple species 

The instability of model 

parameters was well described 

across organisms. 

[43] Trichloroethylene 

and 

its metabolites 

By quantifying the volatility 

of dose-response interactions 

in noncancer and cancer risk 

assessment, this study 

enhances the extrapolation of 

dangerous Trichloroethylene 

(TCE) dosages from 

laboratory animals to people. 

Table 3.2 

 

Stan and GNU MCSim are two Bayesian software inference 

tools that estimate physiologically based pharmacokinetic 

(PBPK) model parameters using various Markov chain Monte 

Carlo (MCMC) methods. when they were compared GNU 

MCSim mixed much quicker and had a higher average 

computing efficiency than Stan.[28] 

In Bayesian PKPD link models, implement a method for 

preventing unwanted feedback by Combining MCMC with 

‘sequential’ PKPD modeling [44]. 

 

3). Physiological covariate modeling 

Many physiological characteristics in the PBPK 

model are influenced by an organism's anthropometry, such as 

age, gender, or body height. To integrate such relationships, 

covariates and scaling functions are used. This minimises total 

variability as well as the dimensionality of the parameter 

space. The following are the components of the covariate 

model [35].  

 

 

 
 

                   

(4) 

where Ai, Gi, and Hi are the covariates for age, gender, and 

body height, respectively. The letters M and S represent for the 

population mean values and standard deviations, respectively, 

for fixed effects. [35]. A mean value M and standard deviation 

S for each grid point are used to describe age and gender-

related distributions on a grid based on the configuration of the 

applicable physiological database.  is the age-scaled 

vector of population standard deviations for individual I 

particular to gender, and  is a gender-specific age-scaled 

vector of population mean values for individual I where age 

scaling was achieved using linear interpolation between grid 

points. 

 As a result of this formulation, the population model function 

d becomes linear. [35] The random effects  are believed to 

be independent of an individual's anthropometry, meaning that 

regardless of the variables, the unexplained variance in the 

parameters should be the same. is thought to be unrelated to A 

priori. 

 

A defined function,  is formulated for organ volumes. The 

scaling coefficient is the ratio of an individual's body height  

to the mean height of the constitutional covariates  

defined group. The vector α represents the allometric scaling 

factors for each organ[35]. 

In [45], the impact of body weight on paracetamol 

pharmacokinetics in newborns in the presence of missing time-

dependent variables is investigated using population 

pharmacokinetic modelling.. Missing body weights have a 

minimal effect on population estimates of pharmacokinetic 

parameters, but they have a big impact on covariate 

relationship parameters, particularly the one that defines 

clearance reliance on body weight. When it comes to missing 

covariates, the simulation methodology helps you to borrow 

data from several experiments if they all address the same 

demographic.  

Covariate modelling is an important stage in the 

analysis of clinical data for determining the dosage 

requirements for a specific group [46]. The identification of 

the true covariate is sometimes complicated because of the 

strong correlation among covariates. Three ways for balancing 
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data and prior knowledge when picking covariates: (1) full 

fixed effect modelling (FFEM), which incorporates covariate 

selection prior to data analysis, (2) simplified stepwise 

covariate modelling (sSCM), which is totally data-driven, and 

(3) Prior-Adjusted Covariate Selection (PACS), which 

incorporates both. [47]. Covariate pharmacokinetic 

considerations in pediatrics are discussed in [48]. Covariate 

studies in children are advancing our understanding of drug 

disposition and effects in children as they develop, ultimately 

leading to more effective medication use. [49]. 

 

4). Visual predictive check 

A visual predictive check (VPC) is a useful approach 

for evaluating the auxiliary and stochastic applicability of 

population pharmacometrics models. Within user-specified 

intervals, or bins, of the independent variable, VPCs 

frequently entail computing quantiles of the reliant variable, 

such as the tenth, 50th, and 90th percentiles. These quantiles 

are used to compare populations and interpret observable data 

and information from a pharmacometrics model. Externally, 

the estimated quantiles for observed and simulated data are 

assessed. This natural analytic methodology can reveal model 

detail flaws and provide procedures for model 

improvement.[50] 

In addition to bin selection, VPCs can be conducted 

utilizing suppression techniques such as additive quantile 

regression (AQR)[51],[52],[53], and local regression 

(LOESS). The independent variable's bins do not need to be 

stated because the AQR and LOESS are regression methods. 

VPCs and prediction corrected VPCs can both be performed 

using regression techniques (pcVPCs)[54] models of 

population pharmacometrics. 

VPCs are carried out using regression methods. The following 

is the algorithm for calculating prediction corrected VPCs 

using LOESS and AQR: 

 

1.   Regress the observed population predictions (PREDs) 

of the population pharmacometrics model against the 

independent variable using LOESS. This will give 

you the estimated PRED for each independent 

variable measurement j. This phase should be 

optimized for (span parameter) before visual 

inspection to ensure that the LOESS fitted values 

match the observed data.[50]. 

2. Calculate the dependent variable's prediction adjusted 

values for an individual i at measurement j.  

            (5) 

where  stands during measurement j, for the observed 

dependent variable for individual i,  stands for the 

population prediction for individual i at measurement j, and 

PREDij stands for population prediction for measurement j. If 

both sides of the data are modelled with a log transform, Eq. 5 

can be changed to [50]: 

      (6) 

where  is achieved by using the LOESS 

function on   in comparison to the independent 

variable. 

 

 

3. Use  (or ) as the dependent variable in the 

VPC procedure. [50] 

When the population under study includes multimodal 

parameter distributions, nonlinear mixed-effects models do not 

hold up well. By capturing these multimodalities, mixture 

models enable the finding of parameters specific to a 

subpopulation. For mixture models with multimodal parameter 

distributions, visual predictive checks (VPC) have been 

established. [55] 

 

IV. OPTIMAL CONTROL FOR DRUG OPTIMIZATION 

 

What should you do if you only have a limited amount of time 

and resources? We 

figure out what the optimal therapy option is for a patient with 

a specific disease. The goal of optimal control is to find the 

controls (which may change over time) that get the system as 

close as possible to the desired output. An objective function, 

that is maximized or minimized is used to quantify the desired 

outcome. Figure 1 shows the  Procedure for achieving the 

optimum control.[56] 

 

 
Fig. 1 Procedure for achieving the optimum control [56] 

The first stage is to build a model of the disease's dynamics 

and how the treatment affects them. The model must be 

sufficiently detailed to account for the impacts of targeted 

therapy. After then, the treatment's objective must be 

quantified. In most cases, we want to maximize the benefits of 

a treatment while limiting its negative effects. We get a 

mathematical statement to optimise when we combine phrases 

indicating these affects with appropriate signs and weights. 

We'll go on to the following phase after we've determined the 

system's parameter values. We can come up with the ideal 

control system. The technique should next be evaluated by 

comparing the results of a predicted ideal treatment to the 

results of standard treatments. Mathematical modelling, 

simulation, and optimization of the therapy process may help 

doctors make better decisions, which could lead to fewer 

severe side effects and longer remissions. [57]. Our goal is to 

determine the optimum drug dosage schedule as well as 

anticipate absorption and concentration rates. The 

pharmacokinetic model was changed by adding a control 

vector, and the redesigned model was analyzed using optimal 

control theory [58]. 

 

V. CONCLUSION 

This paper examines the various methods for developing 

pharmacokinetic and pharmacodynamic models. There are a 

variety of ways that can be used to build population modelling. 

This article examines the evolution of modelling software. The 

greatest way for determining the optimal treatment for a 
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patient with a certain ailment is to optimize medications 

through optimum management. This article also looks at 

various control approaches. As a result, optimal control is a 

well-established modelling technique that we can now use 

more widely to increase drug development success and 

provide patients more time with their families. 
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