
Multiple Stuck At Fault Diagnosis System For Digital Circuit On FPGA

Using Vedic Multiplier and ANN

Mangesh Islampurkar, Kishanprasad Gunale, Sunil Somani, Nikhil Bagade,
Dr. Vishwanath Karad MIT World Peace University,

Survey No, 124, Paud Rd, Kothrud, Pune, Maharashtra, 411038
India

Received: September 16, 2021. Revised: March 7, 2022. Accepted: April 12, 2022. Published: May 30, 2022.

Abstract- In an electronics circuit, the pres-
ence of a Fault leads to undesired or unexpected
results. The output of many nodes on the circuit
is changed due to the presence of the Fault at
one node. So, it is necessary to detect the na-
ture of the Fault present in a particular faulty
node. To detect the fault present in the digital
circuit, it is necessary to understand logical be-
havior using mathematical modeling. After the
successful modeling, parameters are extracted,
and the database is generated. The mathemat-
ical model uses Hebbian Artificial Neural Net-
work algorithms [1] [2]. The database generated
is used by the fault detection system to find the
masked and multiple faults. A fault detection
system monitors the faults present in the test cir-
cuit and finds the origin and nature of the Fault
[3] [4]. The database generated for single stuck-at
faults is used to find the multiple faults present in
the faulty circuit. In this paper, Modified Vedic
Multiplication [5] [4] method is used to optimize
the utilization of the proposed system. In this
proposed design multiplier of {N x N} bit in-
put and {N} bit output is used, due to which
device utilization is decreased, which is the ex-
pected outcome from the design. This system
is designed using ISE Design Suite and imple-
mented on Spartan-6 FPGA [6] [7].

Keywords- Index Terms Fault Detection,
Vedic Multiplication, Artificial Neural Network,
Verilog HDL, Hebbian ANN [8].

I. Introduction

Electronics system uses theoretical concepts, math-
ematical calculations, and assumptions. Unex-

pected changes in the behavior of the system lead to
Fault. However, the system is not working correctly in
multiple cases as many things are assumed constant in
nature, i.e., temperature, source voltage, etc.

Various faults can occur in the digital system. Before
diagnosing the Fault, knowing the original testing circuit
is necessary. To understand the behavior of the testing
circuit, a mathematical model is derived instead of re-
ferring to the truth table. This mathematical model is
reflected as the logical expression of the testing circuit.

Initially, the mathematical model is derived using the
basic principles of Artificial Neural networks (ANN) [1].

As the mathematical model is derived, Field Pro-
grammable Gate Array (FPGA) has a logical expression
of the testing circuit. The mathematical model operates
on the FPGA operating frequency instead of the physical
device. Hence, the speed of analysis of the physical de-
vice is increased. The mathematical model is also helpful
in designing control systems for the physical device. Af-
ter testing a control system for a mathematical model,
it is tested on the natural system. To derive any math-
ematical model using ANN algorithms on FPGA, it is
necessary to synthesize the multiplier module.

While synthesizing the multiplier module, the com-
piler is trying to synthesize the hardware multiplier.
Digital Signal Processors (DSPs) have built-in hardware
multiplier units. Thus, the compiler synthesizes the DSP
module to perform multiplier operations. The number of
DSP modules is limited in FPGA. Therefore, it is nec-
essary to synthesize the dedicated structure for the mul-
tiplication operation. Many algorithms synthesize the
multiplier like the Series Multiplier, Booths Multiplier,
Parallel Multiplier, Vedic Multiplier [9], etc. Employing
these algorithms, the compiler synthesizes multiplier us-
ing Look-Up Tables (LUTs) instead of the DSP module.

II. LITERATURE SURVEY

The experts present various analytics tools that can
effectively detect the Fault in the system. Faster and
more efficient multipliers should be utilized to increase
system speed. A Vedic multiplier is one of the most ef-
fective ways to execute multiplications faster by omitting
stages that arent required in the standard multiplication
process [10] [9].

The Urdhva Tiryagbhyat Sutra, derived from Vedic
mathematics, was used to design a high-speed 16 x 16

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.120 Volume 16, 2022

E-ISSN: 1998-4464 985

Vedic multiplier to cut down power consumption, a big
issue in digital design. It is an unparalleled combina-
tion for performing any complex multiplication opera-
tion where speed is critical. Using Vedic Multiplication
in Elliptic Curve Cryptographic (ECC) reduces the pro-
cessing time. In [4] author presented the multiplier cir-
cuit using fault-tolerant adder circuits. In this system,
the Fault and increase in the reliability of the multiplier
circuits are reduced. The multiplier is coded in Verilog
HDL ISE Sim 11 and used to perform simulations, and
usage of the area and power consumption were obtained
using the Xilinx ISE 11.

The Hebbian weight is based on the Hebbian learn-
ing rule. The winner output neuron obtained from the
forward calculation part is adjusted. The whole circuit
does not require the participation of CPU, FPGA, or
other microcontrollers, providing the possibility to real-
ize computing in memory and parallel computing. The
advanced ECC high-speed architecture is designed using
the FPGA technique for elliptic curve-based multi-level
key exchange, age, and encryption mechanism (ECM-
KEEM) [5] is implemented and evaluated with Virtex-7
and Kintex7 platforms. It is designed for enhanced per-
formance to verify the improved application efficiency
with Vedic multiplier-based design [9]. It solves fault de-
tection problems and achieves objectives with the Heb-
bian theory’s help [8], one of the neuroscience field’s
learning methods [11].

III. PROPOSED DESIGN

Figure (1) shows the block diagram representation of
the designed system. Here, two input one output digital
logic circuits are considered as test circuits.

Weights for a testing circuit are generated using ANN
algorithms [11]. Weights are generated using the Heb-
bian algorithm. The suggested systems testing circuits
are linearly separable. As a result, linear activation func-
tion techniques are employed. After successful mathe-
matical modeling of the physical circuit, the parameters
are extracted as controllability of every node and the ef-
fect of individual artificial faults on an individual node.
Following the extraction of parameters from the math-
ematical module, a database comprises information on
faulty and fault-free behavior and the controllability of
individual nodes. This database is used by Fault Detec-
tion System (FDS) to detect the multiple and masked
faults present in the Circuit Under Test (CUT) [3].

When an external event occurs, the fault detection
procedure begins. The flags are set, and test patterns
are applied based on the errors found inside the system.
The test patterns responses are utilized to determine the
origin and type of the Fault.

The proposed system has a 100 % accuracy for a sin-
gle stuck-at fault; if an input or output is stuck at {0,1},
the proposed system can recognise the type of the fault.
The proposed system has a 100% accuracy for a single
stuck-at fault; if an input or output is stuck at {0,1},
the proposed system can recognize the type of the Fault.
Multiple masked stuck at faults at the input stage can
be detected with 100% accuracy, while multiple masked

faults at the input and output stages can be recognized
with 33.33% accuracy. CUT is a logical AND gate with
two inputs in the proposed design, and a single output is
used. If one of the inputs is stuck at 0 and the output is
also stuck at 0, the suggested approach cannot identify a
stuck at 0 faults at the output stage. However, if another
input is stuck at {0,1}, the system can detect a fault in
both inputs.

In the proposed system number of input tests pattern
are generated to detect the Fault as minimum as possible,
due to which it is easy to detect the Fault as quickly as
possible. Let us consider CUT as a logical AND gate
with two inputs and one output. If the CUT response
output is stuck at 1, then the test pattern generated to
test the Fault is {0,0} at both the inputs.

As ANN is already trained to detect all the possi-
ble combinations of faults, the number of test patterns
needed to generate to find the possible Fault is decreased.

In this proposed design, a Vedic multiplier with {N
x N}bit input and {N} bit output is required. As a
result, a modified Vedic Multiplier using the straight and
cross approach is required. In comparison to {N,N} bit
input and {2N} bit output, these data show a decrease
in device utilization.

Fig. 1: Block diagram of the designed system

IV. MATHEMATICAL MODELLING

The mathematical model of the CUT is derived using
algorithms of neural networks. The test circuit used in
the designed system is two inputs and one digital output
system. The inputs of the systems are linearly separa-
ble. Due to this, the line equation is synthesized inside
the FPGA [11].The net weight equation designed for two
testing inputs and one biased input is described per the
generalized neural network as in (1).

Net Weight = (X1 × W1)+(X2× W2) + (b×Wb)
(1)

Considering the example of Logical OR gate con-
nected as an external test circuit to the Articial Neu-
ron [12], after successful weight generation, the values
for weights W1 ,W2 and Wb are modified as per the
weights calculated are as shown in Table I,

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.120 Volume 16, 2022

E-ISSN: 1998-4464 986

Table I: Hebbian Weight Calculation for logical OR
operation [8]

If the calculated weights in Table I are applied to (1),
the resultant modied as in (2), (3), (4), and (5),

1 ∗ 2 +X1 ∗ 2 +X2 ∗ 2 = 0 (2)
X2 ∗ 2 = − (X1 ∗ 2)− 2 (3)
X2 = −

(
X1
2

)
− 2

2 (4)
X2 = −X1− 1 (5)
The equation used for boundary line condition for

linear function with a negative slope is represented as
(6),

y = mX + c (6)
The Equation (5), matches the equation of boundary
condition shown in Equation (6). The line equation rep-
resented by the Equation (5) is shown in Fig. 2

Fig. 2: Line Plane representation of Equation 5

Here, Equation (5) substitutes on the plane. How-
ever, the boundary side described by logical HIGH and
logical LOW is unknown logic. Input training database
stored in RAM describes the logical HIGH state and logi-
cal LOW state of the boundary condition. The test pat-
tern inputs are X1 = 1 and X2 = 1. Applying these
values in (5),

1 = −1− 1 (7)
1 = −2 (8)
The condition of equality does not satisfy by the (7)

and (8). The right-hand side of the (8) is smaller than the
left-hand side. It results in the upper side of the plane
being described by logical HIGH and the lower side of the

plane being described by logical LOW. In other cases, if
the right-hand side of the Equation is greater than the
left-hand side, the upper side of the plane is described by
logical LOW, and the lower side of the plane is described
by logical HIGH. Due to this, the upper side of the plane
is described by logical LOW, and the lower side of the
plane is described by logical HIGH.

A. Artificial-neural-network
The basic architecture of two inputs articial

neuron[11], used to design the proposed neural network
in this system is shown in Fig. 3

Fig. 3: Structure of Single Artificial Neuron[2]

In the proposed system, Bilinear classifier logical
gates are considered as a test circuit i.e. Logical OR
gate, and experimentation is implemented to verify the
operation of logical gates on FPGA [13]. Hebbian weight
generation algorithm [8] is used to calculate the weights.
Simulation results using the ISE Design suite for weight
generation [14] are shown in Fig. 4.

Fig. 4: Simulation results for weight generation using
ISE Design Suite

Due to Bilinear classification, a linear activation func-
tion is applied, and the activation function is made up
of two models: calculation equation and decision logic.
Calculating the Equation combines the weights gener-

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.120 Volume 16, 2022

E-ISSN: 1998-4464 987

ated with the unknown input condition as shown in (1)
and (2). The decision logic is utilized to determine the
output condition based on a determined equation.

B. Controllability
Controllability of the system can be defined as the

state condition of control input used to force the system
to get known controlled output. To test an individual
node for individual Fault, it is necessary to know the
controllability of every node for logical LOW and logical
HIGH [15]. The proposed system deals with generat-
ing a database of controllability for every node. The
CUT has two inputs. So, for every node, two-bit data is
generated for controllability of logical LOW and logical
HIGH. There are two input nodes and one output node.
Hence, a 12-bit database generated by the system rep-
resents the controllability of every node for logic LOW
and logic HIGH.

Fig. 5: RTL design of activation function with super-
viosary method using ISE Design Suite

C. Artificial Faults Training
After understanding the logical behavior of the sys-

tem and the controllability of every node, it is neces-
sary to understand the systems response to an individual
fault.Once the mathematical model for the system is de-
rived, it is essential to apply the faulty inputs to the ANN
and generate the database for all single stuck-at faults.
As shown in Fig. 5, a test pattern generator generates
various test inputs with 6-bit flags. A fault generator
block is used to generate every individual Fault in test
input based on the flag value. This faulty test pattern
is applied to the ANN, generating the fault database.
The database generator is used to observe the nature
of the ANN for fault-free response and faulty response
[14]. The dataset generated for the faulty response of the
logical OR gate for every single stuck-at Fault is shown
in Table I. As shown in Table I, every fault response is

compared with a fault- free response, and a mismatch
between the faulty response and the fault-free response
is stored in a database [15].

In the proposed system, a 48-bit database is gener-
ated. The database structure for two input logical OR
gates used as a test circuit is shown in Table II.

Table III indicates some tristate conditions repre-
sented as zzz where faults result in a match with ideal re-
sults. The values are also considered data if the database
contains logic HIGH or LOW values in such states. Thus,
these exceptional conditions are represented by tristate
logic, and these conditions change according to the test
circuit connected to FPGA changes.

V. Fault Detection Unit

FDS is used to find the multiple and masked faults
present in the test circuit. As shown in Fig.1, the
database generated is applied to the FDS. The FDS
starts to operate when an external trigger event triggers
at a negative edge.

A. Faults Identification

According to the nature of the faults, if the Fault is
present in the input node, the nature of the Fault is re-
flected in the output node. So, initially, it is necessary
to find the number of faults present in the circuit. Con-
sidering the example of the logical OR gate, if the input
A is stuck at logic LOW, the response of the system is
mismatched with the ideal system for the condition {1,
0, 1}. According to Table II {0, 0, 0} condition indicates
two faults input Sa0 and Output Sa0, respectively. The
principal operation of the fault identification module is
to find several faults present in the test circuit and set
the flags based on faults detected. The simulation results
for flag indication is shown in Fig. 6

Fig. 6: Simulation results for flag indication using ISE
Design Suite

Table II : Database Generate by apply artificial faults
to ANN.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.120 Volume 16, 2022

E-ISSN: 1998-4464 988

A B Out a/0 a/1 b/0 b/1 Out/0 Out/1
0 0 0 0 1 0 1 0 1
0 1 1 1 1 0 1 0 1
1 0 1 0 1 1 1 0 1
1 1 1 1 1 1 1 0 1
Database 100 001 010 001 010 001
Generated 100

B. Multiple Fault Detection

According to the nature of the Fault, the mul-
tiple faults are masked. The results generated
from one Fault are masked or eliminated due
to other faults. In this case, the Fault which is
masked remains hidden or not detected. These
hidden faults can be detected using a database
generated for single stuck faults for every node
and flag indicators. The algorithm used to de-
tect the Fault at every node is described below,

� Case 1: No flag is Set: Test pattern is applied to
control the node logical LOW. If the node is logical
LOW, no hidden Sa0 fault is present. If no hidden
Sa0 fault is present, the test pattern is applied to
control the node logical HIGH. If the node is logical
HIGH, no hidden Sa1 fault is present.

� Case 2: Sa0 flag is Set: Test pattern is applied to
control the node logical HIGH. If the node is logical
HIGH, no Sa0 fault is present.

� Case 3: Sa1 flag is Set: Test pattern is applied to
control the node logical LOW. If the node is logical
LOW, no Sa1 fault is present.

Table III Structure of database generated inside the
RAM

Col 1 Col 2
Location 1 (No fault for input {0,0} 000
Location 2 (No fault for input {0,1} 011
Location 3 (No fault for input {1,0} 101
Location 4 (No fault for input {1,1} 111
Location 5 (Input a stuck at 0) 100
Location 6 (Input a stuck at 1) 001
Location 7 (Input b stuck at 0) 010
Location 8 (Input b stuck at 1) 001
Location 9 (Output stuck at 0 for input {0,0} zzz
Location 11 (Output stuck at 0 for input {1,0} 100
Location 12 (Output stuck at 0 for input {1,1} 110
Location 13 (Output stuck at 1 for input {0,0} 001
Location 14 (Output stuck at 1 for input {0,1} zzz
Location 16 (Output stuck at 1 for input {1,1} zzz

In the case of a proposed system, the time re-
quired to detect the Fault depends on the stages
present in the digital circuit. For the input
stage, if the test circuit has n number of inputs
and the test circuit is operating on frequency m,
the maximum time required to detect a fault at
the input stage is shown in (9),

Input stage fault time = (n- 1) / m (9)

Similarly, to detect the Fault at stage 2, which
is the output stage, the maximum time required
is shown in equation (10),

Output stage fault time = (n + 1) / m (10)

VI. Vedic Multiplier

[5] In the process of weight generation, multiplier op-
eration is synthesized as given in (1) and (2) to synthesize
this multiplier, the Vedic multiplication method is used.
In the designed system, the structure of The Vedic mul-
tiplier is divided into a straight multiplier and a cross
multiplier [10] [16]. With the combination of straight
multiplier and cross multiplier, the {N x N} input and
{N} output multiplier are designed [4].

A. Straight Multiplier

In this research work, a Straight Multiplier and Cross
multiplier are designed to reduce the FPGA resources as
compared to a generalized Vedic Multiplier, as shown in
Fig. 7

A straight Multiplier is used to multiply the single-
digit input with carrying input and generates the single-
digit output with carryout. The structure of the straight
multiplier [17] is (as shown in Figs.7 a and 7 b)

B. Cross Multiplier

Cross Multiplier [18] is used to multiply the two-digit
input with carrying input and generates the single-digit
output with carryout. The structure of the cross multi-
plier is shown in (as shown in Figs. 8a and 8b).

The Vedic multiplier is described using a 4× 4 Vedic
multiplier and ripple carry adder to synthesize the mul-
tiplier. The device utilization of the existing Vedic mul-
tiplier and designed Vedic multiplier is shown in Table
III.

According to Table III, the designed method uses
fewer Look-up Tables (LUTs) due to the customized de-
sign. The FPGA performs bitwise operations. Due to
this, no specified length data type is used. The length
of the data type is custom or user-defined. According to
the Vedic multiplier designed in [16], the length of the
data type needs to be in 2n format. This disadvantage
is addressed in the proposed system. The comparison
between device utilization for different length data types
is shown in Table III.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.120 Volume 16, 2022

E-ISSN: 1998-4464 989

Fig. 7: Straight multiplier logic design (a) Straight mul-
tiplier structure (b) Multiplier logic design

Table III Device utilization of 8 × 8 Vedic Multiplier.

Devices
technology

Calculate
values

Existing Design Available

Slice
LUTs

8 67 52 0

LUT FF
pairs

0 0 0 0

Bonded
IOBs

25 25 25 0

DSP48A1s 1 0 0 16

VII. Hardware Implementation

Fig. 9 indicates the hardware implementation of a
fault diagnosis system [6]. IC D4071BC represents the
Logical OR gate used as a testing circuit. Here, cap
switches are used to insert the Fault in the testing circuit
without physical damage. As shown in Fig. 11, if no fault
is present in the test circuit, the output LED indicates
the result of no fault detection on Spartan 6 - X-XP6-
X9 [7]

Fig. 8: Cross multiplier logic design a: Cross multiplier
structure b: Multiplier logic Design

Fig. 9 Hardware Implementation Results for no fault
detection in the designed system using Spartan 6- X-
XP6-X9 [7]

Fig. 10: Hardware Implementation Results for in-
put b stuck at 0 fault detection in the designed system
Spartan 6- X-XP6-X9 [7]

Conclusion A systematic technique is employed to
discover multiple faults in the digital circuit. The sug-
gested system is based on neural network architecture
due to fault characteristics’ high similarity and error
overlap. The neural networks output creates a database
used to determine the probabilities associated with the
test flag. It is used to describe a specific type of Fault.
The circuit in the proposed system optimizes the out-
put processing so that the training data required for the
circuit under test is minimal.

After successful training of the neural network using
the Hebbian weight generation algorithm, the system is
capable of robust fault diagnosis. The accuracy for a sin-

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.120 Volume 16, 2022

E-ISSN: 1998-4464 990

gle stuck-at fault present at input and output in the pro-
posed system is 100%. Multiple masked stuck at Fault
present at the input stage were detected with 100% accu-
racy, and multiple masked faults present t at the input
and out stage was detected with 33.33% accuracy. In
the proposed system number of input tests pattern are
generated to detect the Fault as minimum as possible,
due to which it is easy to detect the Fault as early as
possible. Since the ANN is already trained to detect all
possible combination faults, the number of test patterns
required to find the possible Fault is minimal.

FPGA [19] utilization of the system is optimized us-
ing Vedic Multiplier. In this proposed design, it is re-
quired to use a Vedic multiplier of {N x N} bit input
and {N} bit output. As a result, a modified Vedic Mul-
tiplier using the straight and cross approach is required.
In comparison to the {N, N}bit input and {2N} bit out-
put multiplier, these findings show a reduction in device
utilization.

The performance of a system for multiple fault diag-
nosis increases with increasing independent nodes, which
is possible in large digital circuits. Multistage circuit
fault detection can be possible using the self-organized
map for future enhancement. The existing methods to
detect faults are designed for a specific CUT or set of
CUT. In the proposed method, the logical behavior of
CUT is entirely unknown. The logical behavior of the
system is analyzed and replicated by mathematical equa-
tions. The hardware utilization of mathematical equa-
tions is static concerning CUT. Hence, the proposed
method can be used for more complex digital circuits
or analog circuit fault detection with respective changes
in the ANN algorithm.

References
[1] M. Li, Q. Hong, and X. Wang, “Memristor-based

circuit implementation of competitive neural net-
work based on online unsupervised hebbian learn-
ing rule for pattern recognition,” Neural Computing
and Applications, vol. 34, no. 1, pp. 319–331, 2022.

[2] S. Sivanandam and S. Deepa, Introduction to neu-
ral networks using Matlab 6.0. Tata McGraw-Hill
Education, 2006.

[3] R. Isermann, Fault-diagnosis systems: an introduc-
tion from fault detection to fault tolerance. Springer
Science & Business Media, 2005.

[4] G. G. Kumar and V. Charishma, “Design of high
speed vedic multiplier using vedic mathematics
techniques,” International Journal of Scientific and
Research Publications, vol. 2, no. 3, p. 1, 2012.

[5] C. Poomagal, G. Sathish Kumar, and D. Mehta,
“Revisiting the ecm-keem protocol with vedic multi-
plier for enhanced speed on fpga platforms,” Journal
of Ambient Intelligence and Humanized Computing,
pp. 1–11, 2021.

[6] F. de Souza Campos, M. M. Da Silva, M. E. Bordon,
and J. W. Swart, “A logarithmic cmos image sensor

with wide output voltage swing range,” in 2017 In-
ternational Caribbean Conference on Devices, Cir-
cuits and Systems (ICCDCS), pp. 69–72, Ieee, 2017.

[7] V. Bobin and D. Radhakrishnan, “A vlsi residue
arithmetic multiplier with fault detection capabil-
ity,” in Proceedings 1989 IEEE International Con-
ference on Computer Design: VLSI in Computers
and Processors, pp. 348–349, IEEE Computer Soci-
ety, 1989.

[8] M. Ramos, V. Muñoz-Jiménez, and F. F. Ramos,
“Learning clasiffier systems with hebbian learn-
ing for autonomus behaviors,” in Mexican Confer-
ence on Pattern Recognition, pp. 328–339, Springer,
2020.

[9] S. Karthikeyan and M. Jagadeeswari, “Performance
improvement of elliptic curve cryptography system
using low power, high speed 16× 16 vedic multiplier
based on reversible logic,” Journal of Ambient In-
telligence and Humanized Computing, vol. 12, no. 3,
pp. 4161–4170, 2021.

[10] S. Akhter and S. Chaturvedi, “Modified binary
multiplier circuit based on vedic mathematics,” in
2019 6th International Conference on Signal Pro-
cessing and Integrated Networks (SPIN), pp. 234–
237, IEEE, 2019.

[11] H. F. Restrepo, R. Hoffmann, A. Perez-Uribe,
C. Teuscher, and E. Sanchez, “A networked fpga-
based hardware implementation of a neural net-
work application,” in Proceedings 2000 IEEE Sym-
posium on Field-Programmable Custom Computing
Machines (Cat. No. PR00871), pp. 337–338, IEEE,
2000.

[12] Q. Liu, T. Liang, Z. Huang, and V. Dinavahi, “Real-
time fpga-based hardware neural network for fault
detection and isolation in more electric aircraft,”
IEEE Access, vol. 7, pp. 159831–159841, 2019.

[13] F. Asghar, M. Talha, and S. H. Kim, “Neural net-
work based fault detection and diagnosis system for
three-phase inverter in variable speed drive with in-
duction motor,” Journal of Control Science and En-
gineering, vol. 2016, 2016.

[14] J. Ruiz-Rosero, G. Ramirez-Gonzalez, and
R. Khanna, “Field programmable gate array
applicationsa scientometric review,” Computation,
vol. 7, no. 4, p. 63, 2019.

[15] P. Palsodkar, P. Palsodkar, and R. Giri, “Multi-
ple error self checking-repairing fault tolerant adder-
multiplier,” in 2018 IEEE Region 10 Humanitarian
Technology Conference (R10-HTC), pp. 1–4, IEEE,
2018.

[16] M. Akila, C. Gowribala, and S. M. Shaby, “Im-
plementation of high speed vedic multiplier using
modified adder,” in 2016 International Conference

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.120 Volume 16, 2022

E-ISSN: 1998-4464 991

on Communication and Signal Processing (ICCSP),
pp. 2244–2248, IEEE, 2016.

[17] K. D. Rao, C. Gangadhar, and P. K. Korrai, “Fpga
implementation of complex multiplier using mini-
mum delay vedic real multiplier architecture,” in
2016 IEEE Uttar Pradesh Section International
Conference on Electrical, Computer and Electronics
Engineering (UPCON), pp. 580–584, IEEE, 2016.

[18] K. D. Rao, P. Muralikrishna, and C. Gangadhar,
“Fpga implementation of 32 bit complex floating
point multiplier using vedic real multipliers with
minimum path delay,” in 2018 5th IEEE Uttar
Pradesh Section International Conference on Elec-
trical, Electronics and Computer Engineering (UP-
CON), pp. 1–6, IEEE, 2018.

[19] A. Pathan, T. D. Memon, S. Keerio, and I. H.
Kalwar, “Fpga based performance analysis of mul-
tiplier policies for fir filter,” in 2016 International
Conference on Advances in Electrical, Electronic
and Systems Engineering (ICAEES), pp. 17–20,
IEEE, 2016.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.120 Volume 16, 2022

E-ISSN: 1998-4464 992

	Introduction
	LITERATURE SURVEY
	PROPOSED DESIGN
	MATHEMATICAL MODELLING
	Artificial-neural-network
	Controllability
	Artificial Faults Training

	Fault Detection Unit
	Faults Identification
	Multiple Fault Detection

	Vedic Multiplier
	Straight Multiplier
	Cross Multiplier

	Hardware Implementation
	References

