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Abstract: Advanced numerical simulations, that 

include modal and frequency response function 

finite element analysis, frequency domain and 

time domain finite element method – boundary 

element method analysis, are performed to study 

the vibro-acoustic behaviour of crash and splash 

musical cymbals. The results of the modal 

analysis agree well with experimental 

measurements found in literature. The frequency 

domain and time domain coupled finite – 

boundary element method simulations, despite 

their high computational resources and time 

demands, are used for the crucial comparison of 

the velocity spectrograms on the cymbal to the 

radiated sound pressure spectrograms in the air. 

The computational analysis results show that the 

splash cymbal is characterized by a faster decay 

and a higher frequency content compared to the 

crash cymbal. The advanced multiphysics vibro-

acoustic simulations that correlate the 

displacements and velocities of the vibrated 

structure with the radiated sound pressure 

results demonstrate the future capability to 

synthesize the sounds of cymbal music 

instruments. 
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I. INTRODUCTION 
Cymbals are ancient idiophone musical instruments 
which are stimulated by percussion. They are played 
by hitting them with a drumstick or with another 
cymbal. Their basic form is that of a metal hollow 
circular disk slightly elevated in its center. Cymbals 
are mainly made of bronze or other alloys in various 
diameters and thicknesses [1-3]. The sound 
produced by cymbals is inharmonic and thus does 
not have a perceivable pitch. It is of broad spectrum 
which is remarkably rich in high frequency content. 
There are different types of cymbals used by music 
ensembles of differed size (i.e., orchestral, bands or 
small groups) and different music genre (i.e., 
classical, jazz, traditional). Examples of cymbal 
types are the hi-hat, the ride, the crash, the splash, 
and the China cymbals. Cymbals usually range from 
20 to 75 cm in diameter.  When discussing the 
anatomy of a cymbal, there are three physical areas 
that, when struck, produce different vibration 
patterns and corresponding frequency responses, 
which determine the overall sound of the cymbal. 
These are the bell (the raised area at the center of a 
cymbal), the edge (the order periphery), and the bow 
or body (the curved area between the bell and edge). 
The bell seems to play a central role in determining 
the overall sound of a cymbal. Specifically, while 
cymbals that are thinner at their edges are more 
‘crushable’ and have a faster response than those 
with thicker edges. Overall, the sound of a cymbal is 
affected by the size of the bell, the shape of the bow 
and its diameter, the total weight, and the material 
of the cymbal [1,4].  
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The works found in literature focusing on the 
vibrating behaviour of idiophone cymbals are rather 
limited. Using holographic interferometry Rossing 
et al [5] measured the vibration modes of a 38 cm 
diameter cymbal and observed that the first six 
modes resemble those of a flat plate, while at higher 
frequencies, the modes of vibration often mix with 
one another, and hence mode identification is not 
straightforward. Wilbur et al [6] measured more 
than 100 modes of vibration in a 46 cm diameter 
crash cymbal using electronic TV holography. 
Perrin et al. [7,8] identified more than hundred 
normal modes of cymbals using various 
experimental methods such as electronic speckle 
pattern interferometry, laser vibrometry, and 
Chladni sand patterns and compared the 
experimental results with finite element (FE) 
numerical simulations. The results showed that 
certain modes couple with other modes when they 
are close in frequency. Kuratani et al [4] studied the 
effect of the hammering process on the vibration 
characteristics of cymbals via FE simulations. 
Nguyen et al [9] studied the vibrations of thin plates 
and shells with variable thickness via analytical 
modelling and FE simulations with the purpose to 
synthesize the sounds of cymbal-like instruments. 
Moreover, it was shown that at high vibration 
amplitudes, the strong aftersound that provides 
cymbal sound its characteristic shimmer involves 
highly nonlinear processes [2,10]. These processes 
seem to occur when the amplitude of the vibration is 
higher than the thickness of the cymbal [11]. 
Recently, Samejima [12] extended the physical 
modeling of cymbals including the dynamics of 
washers supporting the center of cymbals and 
sticks/mallets striking the cymbals using coupled 
finite difference and FE simulations. 

The aim of the present study is to study the 
vibrational behaviour of a 48.3 cm (19 in.) crash and 
25.4 (10 in.) splash cymbals via detailed simulations 
that include modal and frequency response function 
(FRF) FE analysis, frequency domain Finite 
Element Method – Boundary Element Method 
(FEM-BEM) analysis and time domain transient 
FEM-BEM analysis. FEM is selected since is it 
versatile due to its flexibility in modeling 
complicated geometries when the domain changes, 
when the desired precision varies over the entire 
domain or when the solution lacks smoothness [13-
16]. The simulation results are compared to each 
other as well as to experimental data found in the 
literature. It is of great importance that, to the 
authors knowledge, this is the first study comparing 
the simulation results of velocity spectrograms on 
the cymbal with the radiated sound pressure 

spectrograms, in the air, via the frequency and time 
domain transient FEM-BEM simulations.  These 
simulations demand high computational resources 
and runtime. 

 
 

II. MATHEMATICAL DESCRIPTION 
FEM is ideal for predicting how musical 
instruments react to any kind of force loads, 
vibrations, and variations in environmental 
conditions (temperature, relative humidity, etc.) 
[17,18]. Here, modal and FRF FEM simulations, 
frequency domain FEM-BEM simulations and time 
domain FEM-BEM simulations are performed. The 
basic equation of motion (for structural analysis) 
which is numerically solved is: 

[𝑀] {
𝜕2𝑈

𝜕𝑡2
} + [𝐶]{𝑈̇} + [𝐾]{𝑈} = {𝐹} 

 

(1) 

where [M] is the mass matrix, [C] is the damping 
matrix, [K] is the stiffness matrix, {𝑈} is the 
displacement vector and {F} is the load vector. The 
damping in the system may be defined through a 
stiffness matrix multiplier used to form the viscous 
damping matrix as [C]=β[K], where β is the 
Rayleigh damping constant.  
A. Modal and FRF analysis 

Ignoring external forces, for harmonic motion in the 
frequency domain, Eq.1 results in a modal 
eigenvalue problem of the following form: 
 

([𝐾](1 + 𝜔𝛽 𝑐𝑜 𝑡(𝜔𝑡)) − 𝜔2[𝑀])[𝛷] = 0 
 

 
(2) 

where [Φ] is the modal matrix, whose columns are 
eigenmodes and ω are angular eigenfrequencies. 

FRF is computed using the mode superposition 
method, in the frequency domain. Considering a 
{p(t)} external force, Eq.1 takes the form:  

[𝑀] {
𝜕2𝑈

𝜕𝑡2 } + [𝐶]{𝑈̇} + [𝐾]{𝑈} = {𝑝(𝑡)} 
 

(3) 

Using the mode superposition method, the 
displacements response is expressed as:  

{𝑈} = ∑ 𝜑𝑛𝑞𝑛

𝑁

𝑛=1

(𝑡) 
 
(4) 

where φn and qn(t) are the nth mode shape and modal 
coordinates, respectively. For a N-degrees of 
freedom (DOF) system and for each of the N 
differential equations in modal coordinates in the 
frequency domain, it holds: 
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𝑞𝑛(𝜔) =
𝑝𝑛(𝜔)

(−𝜔2 + 𝑖𝛽𝜔𝑛
2𝜔 + 𝜔𝑛

2)𝑀𝑛

 
 

(5) 

Substituting Eq.5 into Eq.4, the structural 
displacement response in the frequency domain 
becomes: 

{𝑈(𝜔)} = ∑
𝜑𝑛

(−𝜔2 + 𝑖𝛽𝜔𝑛
2𝜔 + 𝜔𝑛

2)𝑀𝑛

𝑝𝑛

𝑁

𝑛=1

(𝜔) 

 

(6) 

Supposing that the excitation was applied at node j 
and the response is evaluated for node k, the 
acceleration frequency response function Fa can be 
expressed as:   

𝐹𝑎 = −𝜔2 ∑
𝜑𝑛(𝑥𝑘)

(−𝜔2 + 𝑖𝛽𝜔𝑛
2𝜔 + 𝜔𝑛

2)𝑀𝑛

𝑃𝑛

𝑁

𝑛=1

(𝑥𝑗) 

 

(7) 

where 𝑃𝑛(𝑥𝑗) = 𝜑𝑛
𝑇𝑝(𝑥𝑗), and 𝑝(𝑥𝑗) is the space 

distribution of the harmonic force excitation.  
B. Frequency domain FEM-BEM and time domain 

FEM-BEM analysis 

The frequency domain response is computed 
utilizing a harmonic response analysis, which is 
employed to determine the steady-state dynamics of 
the vibrated structure in response to loads that vary 
harmonically with time. The excitation spectrum 
can be given as nodal force, as pressure or as base 
acceleration, and considers complex variable input. 
FEM steady-state dynamic (SSD) analysis results 
may be computed using the mode superposition 
method like in the case of the FRF analysis. This 
case differs since the external force in Eq.3 varies 
harmonically with time. Moreover, the transient 
dynamic analysis may also be used to determine the 
response of the structure, which is subjected to a 
time-dependent loading, considering inertia and 
damping effects. In that case, time dependent force 
or pressure or displacement, may be considered as 
the excitation source of the dynamic problem in 
Eq.1.  

In this work, LS-DYNA [19] solvers perform the 
modal and FRF, the frequency domain and the time 
domain FEM-BEM analysis. LS-DYNA has the 
capability to provide an integrated solution for 
vibro-acoustic problems by coupling the FEM 
transient dynamic solver with a BEM acoustic 
solver. The BEM method is used to model the 
environment that surrounds the vibrated structure 
and calculates the pressure of the radiated sound 
[20]. Regarding the frequency domain FEM-BEM 
analysis, an SSD analysis is carried out, based on 
the results of a modal analysis (frequencies, modal 

shapes), to provide the vibrating response of the 
structure in the frequency domain. The obtained 
boundary velocities from the SSD analysis provide 
boundary velocities for the subsequent BEM 
acoustic computations. For the time domain FEM-
BEM analysis, initially the time domain FEM 
analysis is performed, and the time domain dynamic 
response of the structure is converted to frequency 
domain by using the Fast Fourier Transform (FFT). 
Then, likewise with the frequency domain FEM-
BEM analysis, the obtained boundary velocities 
provide boundary velocities for the subsequent 
BEM acoustic computations [21].   

For the BEM frequency domain acoustic 
analysis, the acoustic wave propagation in an ideal 
fluid, with no presence of any volume source, is 
governed by the Helmholtz equation: 

∇2𝑝 + 𝑘2𝑝 = 0 (8) 

where p is the acoustic pressure and k is the 
wavenumber. By using Green’s theorem Eq. 8 can 
be transformed into an integral equation. In this 
case, the pressure at any point in the fluid medium 
can be expressed as an integral of surface pressure 
and surface velocity of a vibrating structure by the 
following equation: 

𝑃𝑄(𝜔) = ∫ (𝐺
𝜕𝑝(𝜔)

𝜕𝑛
− 𝑝(𝜔)

𝜕𝐺

𝜕𝑛
)𝑑𝑆

𝑆

 (9) 

where PQ(ω) is the sound pressure at field point Q, S 
is the structure surface, p(ω) is the surface pressure, 
𝑛 is the normal vector on the surface S and G is the 
Green’s function, which is equal to:  

𝐺 =
𝑒−𝑖𝑘𝑟

4𝜋𝑟
 (10) 

where, r is the distance between the field point Q 
and the surface integration point. It also holds that: 

𝜕𝑝(𝜔)

𝜕𝑛
= −𝑖𝜌𝜔𝑣𝑛 (11) 

where ρ is the acoustic fluid density and vn is the 
normal velocity [22]. Therefore, the knowledge of 
pressure and velocity on the surface allows for the 
pressure determination at every field point.  

III. MODELING AND SIMULATION 
For all the different types of simulations the CAD 
geometries of a 48.3 cm (19 in.) crash and 25.4 cm 
(10 in.) splash Zidjian®-type cymbals were 
developed and are shown in Fig.1. The diameter of 
the bell for the crash cymbal is 95 mm and its inner 
diameter is 10 mm, while the diameter of the bell 
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for the splash cymbal is 83 mm and its inner 
diameter 15 mm.  The thickness from the centre to 
the edge of the cymbal varies and the thickness at 
the edge of both cymbals is 1 mm.  

 
Fig.1 CAD geometries of a) the crash cymbal and b) 
of the splash cymbal. 
 

The mesh of the geometry consists of 
approximately 28000 and 15000 shell elements, for 
the crash and the splash cymbals respectively, 
generated after a mesh independent study, while a 
quadrilateral shell element is used for the 
simulations.  

The material properties of bronze are set 
according to [4]. The density is 8700 kg/m3, the 
Young’s modulus is 85.1 GPa and the Poisson’s 
ratio is 0.36. The Rayleigh damping constant is 
0.001 [4]. Regarding the boundary conditions, a 
clamped constraint is imposed on the nodes 
bounding the central hole, simulating the cymbal’s 
attachment to a supporting structure [7,23].  

For the SSD analysis, the loading function 
F(ω)=90cosωt (in N) is imposed as the excitation 
impact force. This force acts on a selected node at 
the edge of the cymbals. For the transient dynamic 
analysis, a strike is given as an input force to the 
cymbal. The time dependent force has the form [9]: 

𝐹(𝑡) = {

𝑝𝑚

2
[1 + cos (

𝜋𝑡

𝑇𝑤𝑖𝑑
)] , 𝑡 ≤ 𝑇𝑤𝑖𝑑

0                                    , 𝑡 > 𝑇𝑤𝑖𝑑

 
 
(12) 

where Twid is the temporal width of the interaction 
and pm is the amplitude of the force. A short 
interaction time of Twid=1 ms is selected to mimic a 
strong hit given by a drumstick, while the amplitude 
of the strike pm is 90 N [9].  

For both frequency domain and time domain 
FEM-BEM acoustic simulations a frequency range 
of 0-4000 Hz is considered. The upper limit is 
selected based on experiments of the measured 
dominant modes of vibration for a crash and a 
splash cymbal [7.8]. The output frequencies are also 
set to this range, while a resolution of 1 Hz is 
considered. The acoustic medium is air at room 
temperature with a density of 1.21 kgm-3, a speed of 
sound of 340 ms-1 and a reference pressure of 20 
μPa. The geometry of the air sphere that contains 
the drumhead consists of 2000 BEM elements. 
Moreover, a massless acoustic node is placed 0.5 m 
in front and 0.5 m above the center of the cymbal. 
This node corresponds to an assumed microphone 
position in the acoustic field, where the sound 
pressure from the impact is measured.  
 

IV. RESULTS AND DISCUSSION 
The results of the FEM modal analysis of the first 8 
modes of vibration for the crash cymbal are shown 
in Fig.2a. The modes are designated by (m, n), 
where m is the number of nodal diameters and n is 
the number of nodal circles. These results are in a 
good agreement compared to experimental results of 
a crash 45.7 cm (18 in.) diameter cymbal found in 
[8]. The results of the first 8 modes of vibration for 
the splash cymbal are also shown in Fig.2b. Due to 
the smaller size of the splash cymbals the computed 
frequencies are higher compared to the crash 
cymbal. This fact agrees with the work in [8], where 
experimental results of a 30.5 cm (12 in.) splash 
cymbal present higher frequencies compared to the 
18 in. crash cymbal. For these modes the response at 
each resonance was dominated by one mode. The 
deflection shape at each resonance frequency is 
approximately equal to the mode shape. However, at 
higher frequencies, the modes of vibration often mix 
with one another since they have almost the same 
natural frequency, and mode identification becomes 
nontrivial. The deflection shape at each peak does 
not coincide with any of the mode shapes; it is 
rather a combination of their mode shapes [3,4]. 
Nevertheless, a detailed investigation of the mixing 
of the modes is beyond the scope of this research 
study.  
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Fig.2 FEM modal analysis results for the first 8 
modes of a) the crash cymbal and b) of the splash 
cymbal. 
 

Fig.3a and b show the results of the FEM FRF 
analysis for the crash and the splash cymbals, 
respectively. The amplitude ratio of the output 
acceleration to input excitation force is shown in 
relation to frequency. In Fig.3, the mode (2,0) 
corresponds to M1, the mode (3,0) to M2, the mode 
(4,0) to M3, the mode (5,0) to M4, the mode (6,0) to 
M5, the mode (7,0) to M6, the mode (8,0) to M7 
and the mode (2,1) to M8. The results of the FRF 
analysis agree with the modal analysis and it is 
apparent that the splash cymbal presents higher 
frequencies for the same modes of vibration. This 
agrees with the fact that the generated sound of the 
cymbal consists almost entirely of high frequency 
content [1,23]. In the splash cymbal mixing modes 
appear between the eight first modes. The mixing 
mode (6,0) + (3,1) appears at 819 Hz, while the 
mixing mode (8,0) + (4,1) appears at 1033 Hz. This 
mode exists also in the crash cymbal at 452 Hz.   

 
Fig.3 FEM FRF analysis results of a) the crash 
cymbal and b) of the splash cymbal. 

 
Fig.4a and b present results of the frequency 

domain FEM-BEM analysis for the crash and splash 
cymbals, respectively. The normalized acoustic 
pressure, in logarithmic scale, is shown in relation to 
the frequency, while the eight first modes of 
structural vibration are identified in the pressure 
graph. It is interesting that in Fig.3a the peaks of the 
M6 and M8 modes of vibration have become valleys 
of pressure in Fig.4a for the crash cymbal. Likewise, 
in Fig.3b the peaks of the M3, M5 and M7 modes of 
vibration have become valleys of pressure in Fig.4b 
for the splash cymbal.   

 
Fig.4 Frequency domain FEM-BEM results of 
sound pressure in relation to frequency of a) the 
crash cymbal and b) of the splash cymbal. 
 

Fig.5a, b and c show results of the time domain 
FEM-BEM analysis. Fig.5a and b demonstrate the 
radiated normalized sound pressure at the field point 
for the crash and the splash cymbals respectively, 
while Fig5.c demonstrates the normalized 
displacement for the splash cymbal. Comparing the 
results of Fig.5a and b it is observed that the 
oscillations of the sound pressure are attenuated 
faster for the splash cymbal. This comes in line with 
the fact that the splash cymbals have a faster decay 
[24]. Moreover, it is noticed that the oscillations of 
pressure decay faster compared to oscillations of 
displacement, shown in Fig.5c.  
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Fig.5 Time domain FEM-BEM results of a) pressure 
for the crash cymbal, b) pressure for the splash 
cymbal and c) displacement for the splash cymbal.  
 

Furthermore, Fig.6 shows time domain FEM-
BEM results, corresponding to Fig.5, that concern 
the pressure spectrogram for the crash cymbal in 
Fig.6a, the pressure spectrogram for the splash 
cymbal in Fig.6b and the velocity spectrogram for 
the splash cymbal in Fig.6c. By comparing the 
results of Fig6a and b, it is clear that the splash 
cymbal has higher frequency content, compared to 
the crash cymbal. The results of the pressure and 
velocity spectrograms in Fig6.b and c present a lot 
of similarities, however the harmonics developed on 
the vibrating structure are clearer and more discrete 
in relation to the harmonics developed on the air. It 
is for the first time, to the authors knowledge, that 
such a comparison is made since the performed time 
dependent FEM-BEM simulations are time 
consuming and demand very high computational 
resources. This was achieved due to the use of the 
High-Performance Computer (HPC) ARIS for 
parallel processing [25]. 

 
Fig.6 Time domain FEM-BEM results: a) pressure 
spectrogram for the crash cymbal, b) pressure 
spectrogram for the splash cymbal and c) velocity 
spectrogram for the splash cymbal.  
 

V. CONCLUSION 
Numerical simulations were performed for the study 
of the vibro-acoustic behaviour of crash and splash 
musical cymbals. In summary we conclude that: 

 The modal analysis results agree well with the 
experimental measurements found in the 
relevant literature. 

 The frequency domain FEM-BEM simulations 
results of acoustic pressure are in line with the 
FRF results of the vibrated structure. 

 For first time velocity spectrograms on the 
cymbals are compared to radiated sound 
pressure spectrograms, in the air, via the 
frequency and time domain transient FEM-BEM 
simulations, performed on the (High 
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Performance Computer) HPC ARIS for parallel 
processing.  

 The splash cymbal decays faster and exhibits 
significant energy at higher frequencies (above 
1kHz) compared to the crash cymbal. 

 The simulations results demonstrate the 
perspective of synthesizing different cymbal 
sounds parametrized on their physical attributes, 
which will be further investigated. 
 

Future work will focus on experimentally validating 
the results of the numerical simulations via pressure 
measurements of selected physical cymbals, 
therefore permitting to safely associate physical 
parameters of the model with the reproduced sound 
field. 
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