
 

Concurrency is a very important topic and 
concept used in computer science and computer 
modelling [1]-[4].  Concurrency modelling is 
visible in the producer consumer design patterns. 
Concurrency and distributed system modelling 
gains more importance in modern computer 
science [18]-[19]. 

The implications of concurrency require proper 
understanding and treatment both software and 
hardware. If a systems does not have proper 
concurrency control mechanisms activities can 
behave chaotically and indeterminately.  
Concurrency mechanisms can create very 
complex interactions amongst each other and 
different systems. Verification of concurrency is 
a non-trivial problem [15]-[19].  
Mainstream modern multiuser systems and 
critical applications can involve high degrees of 
concurrency. This can imply that several tasks 
are executed in parallel or sequentially following 
some temporal ordering.  Many experts keep 
stating that the current reasoning about 
concurrency is insufficient making verification a 
common problem. To this end various 
specialised tools and frameworks are created. 
Formal languages and formal modelling serve to 
find suitable ways and expressions to properly 
represent concurrency [13]-[14].  
Petri nets are formalisms that have been widely 
used to study, represent and execute concurrent 
system types [1]-[2], [5]-[12]. The study of Petri 
nets from the view of formal specification 
languages is an ongoing work. Using Petri nets 
to model concurrency invites many new 
interesting problems and scenarios. There are 
several Petri net languages, some are context free 
and others not. Several classes of Petri nets exist, 
ranging from simple restricted classes to higher 
order Petri net structures along with formal 
coding languages like ML. Petri net languages 
can be represented using concurrent regular 

expressions. In this work these will not be 
considered and instead the focus will be on 
simple representation directly observed from the 
net’s structure.  
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Abstract: - Concurrency is a fundamental problem 

and a solution applicable to different areas of 

computing. Given the complexities and distribution 

of computer systems and services, concurrency is a 

modern area requiring proper attention. Petri nets 

are formalisms based on process representation both 

from a mathematical view and from a graphical or 

drawing like view. Petri nets are used to model 

concurrent processes. This work deals with 

understanding and representing low level 

concurrency in Petri nets, when this is not always 

visible and properly noted from the graphical 

structure. In this study an algebraic notation has been 

devised and is used to represent the Petri net 

structures. This algebraic notation is used as an 

alternative and simplified way of representation. The 

notation is explained and several simple examples are 

given. The notation presented can be used in 

conjunction with other Petri net analysis and 

verification methods. Some results and findings are 

discussed.  
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The more restricted the Petri net, the easier it 
becomes to control and represent concurrency. 
After all the most complex systems in computing 
have been definitely constructed or derived from 
fundamental structures and primitive building 

blocks [5]-[12].  
 

Parallel, concurrent, sequential and other processing 
modes are an integral part of modern computer 
systems. System verification and validation are 
always gaining greater importance given that modern 
information systems depend heavily on distributed 
technologies [15]-[16]. Petri net formalisms in all 
their forms have been used to contribute to this, it is 
clear that the structural and behavioral properties of 
Petri nets need better understanding in this regard. 
The control mechanisms need proper understanding. 
Many authors have indirectly tackled concurrency 
and Petri nets in their works.  In various instances, 
this has been done using higher order nets and 
structures and are only partially explained. In this 
work this issue will be tackled at the foundational 
level to serve as the building blocks. 
Petri nets describe, depict pictorially and 
mathematically the behavior of many system types 
[20]-[21]. The effectiveness of these notations lie in 
their simplicity, abstractedness and symbolic 
representation. Petri nets are a good choice for 
concurrency and can be easily combined with other 
formalisms [1]-[12].   

When talking about concurrency, what is really 
meant by this? Concurrency is conventionally 
defined as the progressing of two activities or 
programs in parallel. This definition is too generic to 
really give a clear indication of what concurrency is.  
Activities that are causally unrelated could happen 
concurrently just by chance. From a better 
perspective for true concurrency, the activities must 
share some type of coordinating relationship.  There 
is a problem of non-determinism in concurrency. I.e. 
which activity occurs first and in what order do they 
occur? Concurrency does not necessarily hold 
completely true to pure parallel behavior. 
When modelling concurrency in Petri nets, two 
elementary types of concurrency have been identified 
by the author. These can serve to construct more 
complex types.  These are i) weak concurrency and 
ii) strong concurrency. Weak concurrency implies 
that the concurrency situation depends greatly on the 
temporal situation and might or might not take place 
as a future event. Whilst strong concurrency will 
always imply that the activities occur together. For 

this to be guaranteed, certain enabling conditions 
must hold true. 
Even though concurrency in elementary Petri nets 
might look quite simple, for the process of 
concurrency there are several complexity issues and 
factors that can affect the behaviour.  Even a simple 
Petri net could have several possible non-
deterministic firing or execution sequences. 
By definition ordinary Petri net structural forms 
excluding token execution [1]-[3] are classifiable as 
directed bi-graphs or directed bipartite graphs. 
Structurally Petri nets can be divided into two 

disjoint and independent sets U,V such that every 

edge connects to one vertex in U and one vertex in V. 

There are no odd length cycles in the graph. Another 

concise limited way of defining the Petri net is as a 

four or five tuple set (P,T,I,O,M) where P,T are non-

empty finite sets of places and transitions, I is the 

input function and O is the output function, M is the 

initial marking of the net’s places. For more detailed 

definitions it is possible to refer elsewhere.  

Ordinary Petri nets are composed of places and 
transitions. Places may contain tokens that are 
timeless and valueless in the context of ordinary nets. 
The initial token distribution determines the state of 
the net and the possible firing sequence. Firing 
requires the consumption of a resource, i.e. a token 
and possibly outputs a resource or more. Transition 
firing is an atomic event because it cannot be stopped 
[1]-[3]. The difference between enabled and 
activated transitions is fundamental for concurrency. 
To achieve real parallel processing there have to be 
at least two or more tokens in the net. Having parallel 
activity is not necessarily dependent on the graphical 
connections of the net. The problem of concurrency 
is a non-deterministic one. It is an axiomatic fact that 
at the elementary level of the net there is no temporal 
ordering in which multiple pre-activated transitions 
have to fire. This situation can give rise to 
sequentiality, concurrency or both. 
Concurrency can be classified into temporal and 
dependent concurrency. Temporal concurrency 
refers to concurrency that takes place just because of 
processes or events taking place at the same time for 
no specific link between them. It is thus an 
indeterminate process. On the other hand dependent 
concurrency refers to concurrency where there is 
some form of linking between the processes or 
events. This implies that some form of process 
synchronisation takes place. These problems are not 
just limited to Petri nets but exist even when using 
other forms of modelling like UML activity 
diagrams.  
 

II. PROBLEM FORMULATION 
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Figure 1: Petri net with three transitions concurrently 
enabled 
 
As a simple exercise consider a Petri net structure, 
having three transitions simultaneously enabled. The 
transitions can be called T1,T2,T3. Even though they 
are enabled concurrently it does not imply that they 
will fire together and create outputs together. There 
is an element of randomness of how they can fire. So 
the execution could possibly be concurrent, 
sequential or both. This is just for something so 
simple, thus the more complex the net the greater the 
dramatic increase in possibilities. In this simple 
exercise example, concurrency can have binary 
relationships with reflexive and symmetrical 
properties. E.g. the transition T1 could be concurrent 
with itself (T1) which is a reflexive property and T1 
could be concurrent with (T2) which is a symmetrical 
property.  
 
 

Different useful notations exist for process 
representation and abstraction. Unfortunately there is 
no single representation or notation that captures all 
the salient details of a Petri net system. Combining 
formal notations with visual diagrams can give more 
robust and complete models of concurrency. Works 
of all sorts currently exist in literature, but many 
solutions are not simplified and are difficult to 
reproduce. In principle the idea of combining 
different forms of representation is really good, but 
for it to work it has to be applicable to different 
scenarios and not limited to a particular problem. 
Combining Petri nets with formal modelling can 
greatly extend the possible modelling power.  
The solution here is to present simple methods how 
to represent concurrency. For this purpose the 
solution will be limited to ordinary basic place 
transition nets. A good solution is one that can be 
properly understood by different groups of persons 
and applied with minimum effort. It is clearly stated 
that the visual part or graphical drawing of Petri nets 
is fundamental to representing concurrency 
modelling [1]-[8]. It is insufficient to represent the 
concurrency in the net using abstract mathematical 

notations like process algebras or formal languages. 

In this paper’s solution  a two-fold approach is used 

to model and explain concurrency in the Petri nets: 

i) visual graphical Petri net mode and ii) a simplified 

notation created for the net’s structural 

representation. Sometimes when drawing Petri nets, 
the drawing model is quite confusing because of the 
way the edges and nodes are laid out. This makes it 
very difficult to read the model. These type of models 
whilst being good for that particular work will make 
it difficult for a user to understand what is happening 
at other levels. 
 An important aspect of creating Petri net models it is 
the use and application of good diagrammatic 
principles. These have to be applied to the graph 
drawings. These can be classified as: i) simplicity by 
restricting the net to a few elements, ii) aesthetical 
properties, i.e. the outputs and inputs in the net should 
not overlap but should be clearly evident. If possible 
the transition boxes of the net should be of the same 
size, etc. This should ensure that instead of the user 
having to decipher the model, embedded deeper 
layers can be seen at a glance. A well laid out model 
is easier to remember and can serve to generate 
various patterns of operation.  

 

As was previously discussed, there is no single 
absolute method or representation for modelling all 
the important system details in Petri nets. When 
formal or symbolic notations are combined with 
visual models, the approach is more complete and 
detailed. In literature works, this has been 
accomplished using Haskell, Z, Vienna development 
method, the ML language, etc. [3], [14], [17]-[19]. 
This work is all very useful, but then these various 
solutions are only valid for pre-determined scenarios 
and are limited to this.  
Simple Petri net structures are represented as input 
and output functions. The simplified definition is 
given as follows.  This has been greatly improved and 
simplified from the author’s previous work in [9], 
[10].   
An input or output operation for the Petri net is 
defined as X. It is possible to include token values by 
using X(v) where v is the value of tokens in the input 
or output place that connects with X. To clarify X(v) 
would represent input and X<v> would represent 
output. These are not necessarily included in the 
representation. The bindings of a place to an input 
function is given as place.input function conversely 
the bindings of an output function to a place is given 
as output function.place. E.g. v ∙X represents a place 

III. PROPOSED SOLUTION 

IV. ALGEBRAIC NOTATION FOR ORDINARY 
PETRI NET REPRESENTATION 
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v binding to a function X. X is the input arc. Similarly 
the opposite holds for the output. v(q)∙X would 
represent input v and token values q bound to 
function or arc X. The ∆ (delta symbol) will be used 
to represent transitions. The ∙ (binding) is used for 
connecting places and inputs or output flows. The 
operators will be enclosed in {} (syntactic construct).  
Additional operators are used ∩ (and), ∪ (or), → 
(ordering and connecting of input and output 
relations), || (parallel processing). 
 

P

V

x

   ∆p{v▪x}→{}

 
 

Figure 2:  Input process with simplified algebraic 
process representation 
 
Fig. 2 illustrates the use of the simple algebraic 
notation that will be used to represent the elementary 
net models.  
It is possible to include tokens as illustrated in fig. 3. 
This form will not be used for the rest of this work 
and examples.  

  
P

V

x

   ∆p{v(b)▪x}→{}

b

 
Figure 3:  Input process including tokens 
 

P

V

x

   ∆p{}→{x▪v}

 
Figure 4:  Output process with representation 
 
Fig. 4 gives an example of an output process. Note 
that the empty {} denote the absence of inputs 
required for process or transition P. I.e. this implies 
that there is no input requirement for P to activate. 
This is commonly depicted in Petri net theory. There 

is the converse where when a transition fires it is 
possible that no output is created. This is clearly 
shown in the equations for fig. 3 and fig. 2.  
 

v
x A

Y
P

   ∆P{V▪ X}→{A▪ Y}
 

Figure 5: Petri net with exactly one input/ 
output 

 
Figure 5 is a Petri net with exactly one input and 
output. The equation representation is quite simple 
and straightforward. There are no parallel activities 
or concurrency problems in this model. The equation 
for this model is simple and elegant.  
 

Considering the Petri net in fig. 1, three transitions 
are simultaneously enabled or concurrently enabled. 
The diagram used in fig. 1 is redrawn and properly 
labelled as per fig. 6. The equation for the net is 
shown below. Even though P1,P2 and P3 are 
concurrently enabled. This does not automatically 
imply that they will fire concurrently or in parallel. 
The equation that represents this model clearly 
indicates this. Another interesting fact and finding is 
that even though at face value the visual model looks 
to be simple, the mechanisms involved are quite 
complex. There is possible non-determinism in this 
model. The non-determinism is better explained in 
the representation equation than in the net. Actually 
the equation shows that there are four parallel 
processes or activities that exist in this model.  These 
are not normally obvious just by glancing at the Petri 
net structure.  
The equation expression is not considering the tokens 
in the places. So mainly the Petri net is being 
described from a purely structural perspective for the 
concurrency representation and issues. However the  
operational perspective is not considered.  
Even though this structure is rather simple, it 
represents a classic design principle in traditional 
computer systems. Such a structure is commonly 
found in UML2 activity diagrams and is known as a 
fork node. It shows that a single task or process can 
create several other tasks or processes that possibly 
could run concurrently to each other. The structure in 

V. EXAMPLES 

A. Standard Algebraic Notations 

B. Petri net with exactly one input/output 

C. Petri net with three enabled transitions 
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fig. 1 lacks a point of closure or a sink node according 
to graph theory. Hence it is not possible to really 
conclude anything about the concurrency of this 
structure.  
 
 

T1
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P3

a

b

c

d

e

f

a1

a2

a3

   ∆T1{}→{a▪a1∩b▪a2∩c.a3}║∆P1{a1.d} 
   →{}║∆P2{a2.e}→{}║∆P3{a3.f}→{}

  
Figure 6: Petri net with three enabled transitions 

   ∆p1{a1▪ C∩a2.Y}→{D▪ a3} U  ∆p2{a1▪ X ∩a2.B}→{E.a3}
 

a3
C

Fig. 7 Petri net with restricted firing. I.e. choice 
 
In the structure in fig.7 the Petri net shows two 
transitions that are simultaneously enabled. But this 
does not automatically imply that firing occurs in 
parallel. To the contrary if p1 fires p2 is disabled from 
firing and vice-versa. In Petri net theory this is known 
as mutual exclusion. The equation just captures the 
structure of the net. It shows that two processes p1 
and p2 are possible. This it is also explained by the 
equation that these processes are definitely not 
concurrent. As a short summary there are just p1 or  
p2. I.e. there is clearly an ‘or’ condition. It is possible 
to repeat this pattern and include more places and 
transitions. 
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x
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P2 a4
M

   ∆P1{a1▪ X}→{H▪ a2∩I▪ a3}║∆P2{a2▪L∩a3.K}→{M.a4}
 

 
Fig. 8 Petri net suggestive of possible 
concurrency 
 
Fig. 8 depicts a Petri net structure that suggests the 
possibility for concurrency. It can be determined that 
the concurrency is dependent on the enabling 
conditions of the net. For concurrency to be possible 
both P1 and P2 must be activated simultaneously. I.e. 
there must be tokens in a1, a2 and a3. In this case it 
can be stated that P1 and P2 are enabled. The firing 
order does not only depend on this. Firing order is 
undetermined and uncontrolled. This would imply 
that P1 and P2 could execute simultaneously or 
sequentially with e.g. P2 occurring before P1 or vice-
versa. The given equation specifies precisely that. It 
does not show the firing order at all but specifically 
explains what is possible.  
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   ∆T1{P1▪ a1}→{a6▪P2}║
   ∆T2{P3▪ a13}→{a5▪P1}║
   ∆T3{P2▪ a12∩P3▪ a11}→{a7▪P5∩a4▪P4}║
   ∆T4{P3▪ a10}→{a9▪P4}║
   ∆T5{P4▪ a8}→{a4▪P5}║
   ∆T6{P5▪ a3}→{a2▪P1}

   
   

  
Fig. 9 A more complex Petri net 
 

D. Petri net with two concurrent enabled transitions with 

restricted firing 

E. Petri net with two possible concurrent transitions 

F. Comprehensive Petri net example 
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Fig. 9 shows a more realistic and complex Petri net 
model.  Such a model has the possibility for six 
parallel or concurrent processes. These would go 
unnoticed from just looking at or observing the 
physical Petri net structure. The equation depicts the 
actual complexity of this net. It is pointed out that the 
actual concurrency that takes place depends on the 
marking states of the net. The equation just gives the 
possibilities that are available.  The equations for 
these structures show the possibilities of 
decomposing. I.e. if the part of the equation ∆T1{P1▪ 
a1}→{a6▪P2} is considered, this shows that the 
complex equation for this model is in reality 
composed of smaller sub equations. The full equation 
∆T1{P1▪a1}→{a6▪P2}║ ∆T2{P3▪ a13}→{a5▪P1}║ 
∆T3{P2▪a12∩P3▪a11}→{a7▪P5∩a4▪P4}║ ∆T4{P3▪ 
a10}→{a9▪P4}║∆T5{P4▪ a8}→{a4▪P5}║ ∆T6{P5▪ 
a3}→{a2▪P1} is just actually a composition of six 
parallel processes and that’s it! There is no special 
complexity when this is decomposed.  
This explains a simple property and a fact. Petri nets 
can be viewed as compositions of several processes 
or transitions. The actual bottom level building 
blocks for the Petri nets are quite simple.  
 

Even ordinary place transition Petri nets do have 
complex issues when representing concurrency. The 
experiments clearly illustrate that from a static 
structural perspective it is impossible to determine 
the proper execution of the net. There is a problem 
with representation diagrammatic notations as these 
cannot contain all the details so formalisms are 
needed to support. The simple algebraic 
representation approach presented in this work is 
suitable for giving a simple representation of the 
concurrency problem in the Petri net.  
In real world scenarios completely independent 
sequential processes do not exist. Normally several 
concurrent processes are interacting with each other. 
This is common for modern distributed information 
systems such as cloud computing and web 
applications. Even a multi-processing system will 
cause several processes to strongly interact with one 
another. The processes of many systems are usually 
non-sequential as they depend on other events. To 
use information technology for solving issues in the 
real world it is imperative to apply concepts used for 
distributed applications.  
The models given in this paper are simple toy 
examples. They present us with a problem of non-
determinism. Even though the structures are simple 
ones, there is no way how to determine which 
transitions will fire first or second given that more 

than one transition is enabled simultaneously. The 
firing order or sequence depends on the initial 
marking state of the nets. 
The models used in this paper clearly indicate two 
main types of concurrency: i) non-dependent 
concurrency or ii) dependant concurrency. With 
dependent concurrency, there is weak or strong 
coupling between processes or transitions. With non-
dependent concurrency there is no coupling at all 
between processes or transactions.  
These Petri net structures present us with more real 
problems. E.g. when having concurrency, is it real 
concurrency or just apparent concurrency? It is 
possible that many systems give an implicit illusion 
of parallelism, but then these appearances could be 
deceptive and the underlying lower level mechanisms 
at work differ significantly from the workings being 
depicted at a higher level.  
Model checking and verification of different classes 
of Petri nets is of prime importance. There are several 
properties of Petri nets like p and t invariants, 
liveness, fairness, reachability markings, token 
distribution, etc. that can be used to validate well 
established properties of the net’s structure and 
workings. Also algorithms have been devised for 
determining connectivity issues. In our opinion 
concurrency issues are of a greater importance. In 
many of these verification techniques the problem of 
concurrency does not at all figure in these. One of the 
main reasons for using Petri nets is precisely 
concurrency.  
The algebraic notation or equations used in this work 
are simple to comprehend. The equations given can 
be clearly used to represent the structures of the net 
so they can be combined with other verification 
methods and techniques currently in use. They can be 
used to represent fragments or subnets too if it is not 
required to represent the complete net structure. This 
approach could be used or included to create better or 
more modular net structures. More work will have to 
be considered in this direction. Normally the nets are 
checked after construction. The algebraic notation 
presented is possibly useful before and after 
construction.  
The equational forms of representation given here are 
limited in scope and applicable only to representing 
the structural forms of modelling. Hence other 
current techniques are of prime importance too. 
These other notations and even other forms of formal 
modelling should be applied when representing 
systems. From a modelling perspective the rule of 
more is better applies to diversity of different types 
of notations that can be all used for representation.  
 

VI. DISCUSSION 
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This work has presented a simplified but powerful 
novel algebraic notation that us useful for 
representing Petri Net structures. Obviously it cannot 
solve all the representational problems inherent in 
Petri net modeling. Hence the use of this notation is 
envisaged in collaboration with other methods and 
techniques.  Petri nets are powerful formalisms for 
representing concurrency mechanisms at a low-level. 
There is a lot of support for Petri nets in the computer 
science community. It is hoped that this work will 
inspire more research and new developments to 
continually improve this powerful modeling notation 
of Petri nets that now has well over four decades of 
coverage.   
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