

Concurrency is a very important topic and
concept used in computer science and computer
modelling [1]-[4]. Concurrency modelling is
visible in the producer consumer design patterns.
Concurrency and distributed system modelling
gains more importance in modern computer
science [18]-[19].

The implications of concurrency require proper
understanding and treatment both software and
hardware. If a systems does not have proper
concurrency control mechanisms activities can
behave chaotically and indeterminately.
Concurrency mechanisms can create very
complex interactions amongst each other and
different systems. Verification of concurrency is
a non-trivial problem [15]-[19].
Mainstream modern multiuser systems and
critical applications can involve high degrees of
concurrency. This can imply that several tasks
are executed in parallel or sequentially following
some temporal ordering. Many experts keep
stating that the current reasoning about
concurrency is insufficient making verification a
common problem. To this end various
specialised tools and frameworks are created.
Formal languages and formal modelling serve to
find suitable ways and expressions to properly
represent concurrency [13]-[14].
Petri nets are formalisms that have been widely
used to study, represent and execute concurrent
system types [1]-[2], [5]-[12]. The study of Petri
nets from the view of formal specification
languages is an ongoing work. Using Petri nets
to model concurrency invites many new
interesting problems and scenarios. There are
several Petri net languages, some are context free
and others not. Several classes of Petri nets exist,
ranging from simple restricted classes to higher
order Petri net structures along with formal
coding languages like ML. Petri net languages
can be represented using concurrent regular

expressions. In this work these will not be
considered and instead the focus will be on
simple representation directly observed from the
net’s structure.

Concurrency and Petri Net Models
Anthony Spiteri Staines

Department of Computer Information Systems University of Malta Msida, MSD 2080 Malta

Received: August 29, 2021. Revised: February 15, 2022. Accepted: March 1, 2022. Published: March 11, 2022.

Abstract: - Concurrency is a fundamental problem

and a solution applicable to different areas of

computing. Given the complexities and distribution

of computer systems and services, concurrency is a

modern area requiring proper attention. Petri nets

are formalisms based on process representation both

from a mathematical view and from a graphical or

drawing like view. Petri nets are used to model

concurrent processes. This work deals with

understanding and representing low level

concurrency in Petri nets, when this is not always

visible and properly noted from the graphical

structure. In this study an algebraic notation has been

devised and is used to represent the Petri net

structures. This algebraic notation is used as an

alternative and simplified way of representation. The

notation is explained and several simple examples are

given. The notation presented can be used in

conjunction with other Petri net analysis and

verification methods. Some results and findings are

discussed.

Key-Words: - Algebraic representation,

Concurrency, Formal methods, Systems Theory,

Systems Modelling, Petri nets, Verification

I. INTRODUCTION

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.104 Volume 16, 2022

E-ISSN: 1998-4464 852

The more restricted the Petri net, the easier it
becomes to control and represent concurrency.
After all the most complex systems in computing
have been definitely constructed or derived from
fundamental structures and primitive building

blocks [5]-[12].

Parallel, concurrent, sequential and other processing
modes are an integral part of modern computer
systems. System verification and validation are
always gaining greater importance given that modern
information systems depend heavily on distributed
technologies [15]-[16]. Petri net formalisms in all
their forms have been used to contribute to this, it is
clear that the structural and behavioral properties of
Petri nets need better understanding in this regard.
The control mechanisms need proper understanding.
Many authors have indirectly tackled concurrency
and Petri nets in their works. In various instances,
this has been done using higher order nets and
structures and are only partially explained. In this
work this issue will be tackled at the foundational
level to serve as the building blocks.
Petri nets describe, depict pictorially and
mathematically the behavior of many system types
[20]-[21]. The effectiveness of these notations lie in
their simplicity, abstractedness and symbolic
representation. Petri nets are a good choice for
concurrency and can be easily combined with other
formalisms [1]-[12].

When talking about concurrency, what is really
meant by this? Concurrency is conventionally
defined as the progressing of two activities or
programs in parallel. This definition is too generic to
really give a clear indication of what concurrency is.
Activities that are causally unrelated could happen
concurrently just by chance. From a better
perspective for true concurrency, the activities must
share some type of coordinating relationship. There
is a problem of non-determinism in concurrency. I.e.
which activity occurs first and in what order do they
occur? Concurrency does not necessarily hold
completely true to pure parallel behavior.
When modelling concurrency in Petri nets, two
elementary types of concurrency have been identified
by the author. These can serve to construct more
complex types. These are i) weak concurrency and
ii) strong concurrency. Weak concurrency implies
that the concurrency situation depends greatly on the
temporal situation and might or might not take place
as a future event. Whilst strong concurrency will
always imply that the activities occur together. For

this to be guaranteed, certain enabling conditions
must hold true.
Even though concurrency in elementary Petri nets
might look quite simple, for the process of
concurrency there are several complexity issues and
factors that can affect the behaviour. Even a simple
Petri net could have several possible non-
deterministic firing or execution sequences.
By definition ordinary Petri net structural forms
excluding token execution [1]-[3] are classifiable as
directed bi-graphs or directed bipartite graphs.
Structurally Petri nets can be divided into two

disjoint and independent sets U,V such that every

edge connects to one vertex in U and one vertex in V.

There are no odd length cycles in the graph. Another

concise limited way of defining the Petri net is as a

four or five tuple set (P,T,I,O,M) where P,T are non-

empty finite sets of places and transitions, I is the

input function and O is the output function, M is the

initial marking of the net’s places. For more detailed

definitions it is possible to refer elsewhere.

Ordinary Petri nets are composed of places and
transitions. Places may contain tokens that are
timeless and valueless in the context of ordinary nets.
The initial token distribution determines the state of
the net and the possible firing sequence. Firing
requires the consumption of a resource, i.e. a token
and possibly outputs a resource or more. Transition
firing is an atomic event because it cannot be stopped
[1]-[3]. The difference between enabled and
activated transitions is fundamental for concurrency.
To achieve real parallel processing there have to be
at least two or more tokens in the net. Having parallel
activity is not necessarily dependent on the graphical
connections of the net. The problem of concurrency
is a non-deterministic one. It is an axiomatic fact that
at the elementary level of the net there is no temporal
ordering in which multiple pre-activated transitions
have to fire. This situation can give rise to
sequentiality, concurrency or both.
Concurrency can be classified into temporal and
dependent concurrency. Temporal concurrency
refers to concurrency that takes place just because of
processes or events taking place at the same time for
no specific link between them. It is thus an
indeterminate process. On the other hand dependent
concurrency refers to concurrency where there is
some form of linking between the processes or
events. This implies that some form of process
synchronisation takes place. These problems are not
just limited to Petri nets but exist even when using
other forms of modelling like UML activity
diagrams.

II. PROBLEM FORMULATION

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.104 Volume 16, 2022

E-ISSN: 1998-4464 853

P1

P2

P3

T1

a1

a2

a3

1

1

1

1

1

1

Figure 1: Petri net with three transitions concurrently
enabled

As a simple exercise consider a Petri net structure,
having three transitions simultaneously enabled. The
transitions can be called T1,T2,T3. Even though they
are enabled concurrently it does not imply that they
will fire together and create outputs together. There
is an element of randomness of how they can fire. So
the execution could possibly be concurrent,
sequential or both. This is just for something so
simple, thus the more complex the net the greater the
dramatic increase in possibilities. In this simple
exercise example, concurrency can have binary
relationships with reflexive and symmetrical
properties. E.g. the transition T1 could be concurrent
with itself (T1) which is a reflexive property and T1
could be concurrent with (T2) which is a symmetrical
property.

Different useful notations exist for process
representation and abstraction. Unfortunately there is
no single representation or notation that captures all
the salient details of a Petri net system. Combining
formal notations with visual diagrams can give more
robust and complete models of concurrency. Works
of all sorts currently exist in literature, but many
solutions are not simplified and are difficult to
reproduce. In principle the idea of combining
different forms of representation is really good, but
for it to work it has to be applicable to different
scenarios and not limited to a particular problem.
Combining Petri nets with formal modelling can
greatly extend the possible modelling power.
The solution here is to present simple methods how
to represent concurrency. For this purpose the
solution will be limited to ordinary basic place
transition nets. A good solution is one that can be
properly understood by different groups of persons
and applied with minimum effort. It is clearly stated
that the visual part or graphical drawing of Petri nets
is fundamental to representing concurrency
modelling [1]-[8]. It is insufficient to represent the
concurrency in the net using abstract mathematical

notations like process algebras or formal languages.

In this paper’s solution a two-fold approach is used

to model and explain concurrency in the Petri nets:

i) visual graphical Petri net mode and ii) a simplified

notation created for the net’s structural

representation. Sometimes when drawing Petri nets,
the drawing model is quite confusing because of the
way the edges and nodes are laid out. This makes it
very difficult to read the model. These type of models
whilst being good for that particular work will make
it difficult for a user to understand what is happening
at other levels.
 An important aspect of creating Petri net models it is
the use and application of good diagrammatic
principles. These have to be applied to the graph
drawings. These can be classified as: i) simplicity by
restricting the net to a few elements, ii) aesthetical
properties, i.e. the outputs and inputs in the net should
not overlap but should be clearly evident. If possible
the transition boxes of the net should be of the same
size, etc. This should ensure that instead of the user
having to decipher the model, embedded deeper
layers can be seen at a glance. A well laid out model
is easier to remember and can serve to generate
various patterns of operation.

As was previously discussed, there is no single
absolute method or representation for modelling all
the important system details in Petri nets. When
formal or symbolic notations are combined with
visual models, the approach is more complete and
detailed. In literature works, this has been
accomplished using Haskell, Z, Vienna development
method, the ML language, etc. [3], [14], [17]-[19].
This work is all very useful, but then these various
solutions are only valid for pre-determined scenarios
and are limited to this.
Simple Petri net structures are represented as input
and output functions. The simplified definition is
given as follows. This has been greatly improved and
simplified from the author’s previous work in [9],
[10].
An input or output operation for the Petri net is
defined as X. It is possible to include token values by
using X(v) where v is the value of tokens in the input
or output place that connects with X. To clarify X(v)
would represent input and X<v> would represent
output. These are not necessarily included in the
representation. The bindings of a place to an input
function is given as place.input function conversely
the bindings of an output function to a place is given
as output function.place. E.g. v ∙X represents a place

III. PROPOSED SOLUTION

IV. ALGEBRAIC NOTATION FOR ORDINARY
PETRI NET REPRESENTATION

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.104 Volume 16, 2022

E-ISSN: 1998-4464 854

v binding to a function X. X is the input arc. Similarly
the opposite holds for the output. v(q)∙X would
represent input v and token values q bound to
function or arc X. The ∆ (delta symbol) will be used
to represent transitions. The ∙ (binding) is used for
connecting places and inputs or output flows. The
operators will be enclosed in {} (syntactic construct).
Additional operators are used ∩ (and), ∪ (or), →
(ordering and connecting of input and output
relations), || (parallel processing).

P

V

x

 ∆p{v▪x}→{}

Figure 2: Input process with simplified algebraic
process representation

Fig. 2 illustrates the use of the simple algebraic
notation that will be used to represent the elementary
net models.
It is possible to include tokens as illustrated in fig. 3.
This form will not be used for the rest of this work
and examples.

P

V

x

 ∆p{v(b)▪x}→{}

b

Figure 3: Input process including tokens

P

V

x

 ∆p{}→{x▪v}

Figure 4: Output process with representation

Fig. 4 gives an example of an output process. Note
that the empty {} denote the absence of inputs
required for process or transition P. I.e. this implies
that there is no input requirement for P to activate.
This is commonly depicted in Petri net theory. There

is the converse where when a transition fires it is
possible that no output is created. This is clearly
shown in the equations for fig. 3 and fig. 2.

v
x A

Y
P

 ∆P{V▪ X}→{A▪ Y}

Figure 5: Petri net with exactly one input/
output

Figure 5 is a Petri net with exactly one input and
output. The equation representation is quite simple
and straightforward. There are no parallel activities
or concurrency problems in this model. The equation
for this model is simple and elegant.

Considering the Petri net in fig. 1, three transitions
are simultaneously enabled or concurrently enabled.
The diagram used in fig. 1 is redrawn and properly
labelled as per fig. 6. The equation for the net is
shown below. Even though P1,P2 and P3 are
concurrently enabled. This does not automatically
imply that they will fire concurrently or in parallel.
The equation that represents this model clearly
indicates this. Another interesting fact and finding is
that even though at face value the visual model looks
to be simple, the mechanisms involved are quite
complex. There is possible non-determinism in this
model. The non-determinism is better explained in
the representation equation than in the net. Actually
the equation shows that there are four parallel
processes or activities that exist in this model. These
are not normally obvious just by glancing at the Petri
net structure.
The equation expression is not considering the tokens
in the places. So mainly the Petri net is being
described from a purely structural perspective for the
concurrency representation and issues. However the
operational perspective is not considered.
Even though this structure is rather simple, it
represents a classic design principle in traditional
computer systems. Such a structure is commonly
found in UML2 activity diagrams and is known as a
fork node. It shows that a single task or process can
create several other tasks or processes that possibly
could run concurrently to each other. The structure in

V. EXAMPLES

A. Standard Algebraic Notations

B. Petri net with exactly one input/output

C. Petri net with three enabled transitions

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.104 Volume 16, 2022

E-ISSN: 1998-4464 855

fig. 1 lacks a point of closure or a sink node according
to graph theory. Hence it is not possible to really
conclude anything about the concurrency of this
structure.

T1

P1

P2

P3

a

b

c

d

e

f

a1

a2

a3

 ∆T1{}→{a▪a1∩b▪a2∩c.a3}║∆P1{a1.d}
 →{}║∆P2{a2.e}→{}║∆P3{a3.f}→{}

Figure 6: Petri net with three enabled transitions

 ∆p1{a1▪ C∩a2.Y}→{D▪ a3} U ∆p2{a1▪ X ∩a2.B}→{E.a3}

a3
C

Fig. 7 Petri net with restricted firing. I.e. choice

In the structure in fig.7 the Petri net shows two
transitions that are simultaneously enabled. But this
does not automatically imply that firing occurs in
parallel. To the contrary if p1 fires p2 is disabled from
firing and vice-versa. In Petri net theory this is known
as mutual exclusion. The equation just captures the
structure of the net. It shows that two processes p1
and p2 are possible. This it is also explained by the
equation that these processes are definitely not
concurrent. As a short summary there are just p1 or
p2. I.e. there is clearly an ‘or’ condition. It is possible
to repeat this pattern and include more places and
transitions.

H

x
P1a1

I

a2

a3

L

K

P2 a4
M

 ∆P1{a1▪ X}→{H▪ a2∩I▪ a3}║∆P2{a2▪L∩a3.K}→{M.a4}

Fig. 8 Petri net suggestive of possible
concurrency

Fig. 8 depicts a Petri net structure that suggests the
possibility for concurrency. It can be determined that
the concurrency is dependent on the enabling
conditions of the net. For concurrency to be possible
both P1 and P2 must be activated simultaneously. I.e.
there must be tokens in a1, a2 and a3. In this case it
can be stated that P1 and P2 are enabled. The firing
order does not only depend on this. Firing order is
undetermined and uncontrolled. This would imply
that P1 and P2 could execute simultaneously or
sequentially with e.g. P2 occurring before P1 or vice-
versa. The given equation specifies precisely that. It
does not show the firing order at all but specifically
explains what is possible.

P1

T1

a1

a6

P2

a12

T2

a5

a13 a10

T3

T4

a9

a14

a7

P4P3

T5
a8

a4

a3

P5

T6
a2

 ∆T1{P1▪ a1}→{a6▪P2}║
 ∆T2{P3▪ a13}→{a5▪P1}║
 ∆T3{P2▪ a12∩P3▪ a11}→{a7▪P5∩a4▪P4}║
 ∆T4{P3▪ a10}→{a9▪P4}║
 ∆T5{P4▪ a8}→{a4▪P5}║
 ∆T6{P5▪ a3}→{a2▪P1}

Fig. 9 A more complex Petri net

D. Petri net with two concurrent enabled transitions with

restricted firing

E. Petri net with two possible concurrent transitions

F. Comprehensive Petri net example

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.104 Volume 16, 2022

E-ISSN: 1998-4464 856

Fig. 9 shows a more realistic and complex Petri net
model. Such a model has the possibility for six
parallel or concurrent processes. These would go
unnoticed from just looking at or observing the
physical Petri net structure. The equation depicts the
actual complexity of this net. It is pointed out that the
actual concurrency that takes place depends on the
marking states of the net. The equation just gives the
possibilities that are available. The equations for
these structures show the possibilities of
decomposing. I.e. if the part of the equation ∆T1{P1▪
a1}→{a6▪P2} is considered, this shows that the
complex equation for this model is in reality
composed of smaller sub equations. The full equation
∆T1{P1▪a1}→{a6▪P2}║ ∆T2{P3▪ a13}→{a5▪P1}║
∆T3{P2▪a12∩P3▪a11}→{a7▪P5∩a4▪P4}║ ∆T4{P3▪
a10}→{a9▪P4}║∆T5{P4▪ a8}→{a4▪P5}║ ∆T6{P5▪
a3}→{a2▪P1} is just actually a composition of six
parallel processes and that’s it! There is no special
complexity when this is decomposed.
This explains a simple property and a fact. Petri nets
can be viewed as compositions of several processes
or transitions. The actual bottom level building
blocks for the Petri nets are quite simple.

Even ordinary place transition Petri nets do have
complex issues when representing concurrency. The
experiments clearly illustrate that from a static
structural perspective it is impossible to determine
the proper execution of the net. There is a problem
with representation diagrammatic notations as these
cannot contain all the details so formalisms are
needed to support. The simple algebraic
representation approach presented in this work is
suitable for giving a simple representation of the
concurrency problem in the Petri net.
In real world scenarios completely independent
sequential processes do not exist. Normally several
concurrent processes are interacting with each other.
This is common for modern distributed information
systems such as cloud computing and web
applications. Even a multi-processing system will
cause several processes to strongly interact with one
another. The processes of many systems are usually
non-sequential as they depend on other events. To
use information technology for solving issues in the
real world it is imperative to apply concepts used for
distributed applications.
The models given in this paper are simple toy
examples. They present us with a problem of non-
determinism. Even though the structures are simple
ones, there is no way how to determine which
transitions will fire first or second given that more

than one transition is enabled simultaneously. The
firing order or sequence depends on the initial
marking state of the nets.
The models used in this paper clearly indicate two
main types of concurrency: i) non-dependent
concurrency or ii) dependant concurrency. With
dependent concurrency, there is weak or strong
coupling between processes or transitions. With non-
dependent concurrency there is no coupling at all
between processes or transactions.
These Petri net structures present us with more real
problems. E.g. when having concurrency, is it real
concurrency or just apparent concurrency? It is
possible that many systems give an implicit illusion
of parallelism, but then these appearances could be
deceptive and the underlying lower level mechanisms
at work differ significantly from the workings being
depicted at a higher level.
Model checking and verification of different classes
of Petri nets is of prime importance. There are several
properties of Petri nets like p and t invariants,
liveness, fairness, reachability markings, token
distribution, etc. that can be used to validate well
established properties of the net’s structure and
workings. Also algorithms have been devised for
determining connectivity issues. In our opinion
concurrency issues are of a greater importance. In
many of these verification techniques the problem of
concurrency does not at all figure in these. One of the
main reasons for using Petri nets is precisely
concurrency.
The algebraic notation or equations used in this work
are simple to comprehend. The equations given can
be clearly used to represent the structures of the net
so they can be combined with other verification
methods and techniques currently in use. They can be
used to represent fragments or subnets too if it is not
required to represent the complete net structure. This
approach could be used or included to create better or
more modular net structures. More work will have to
be considered in this direction. Normally the nets are
checked after construction. The algebraic notation
presented is possibly useful before and after
construction.
The equational forms of representation given here are
limited in scope and applicable only to representing
the structural forms of modelling. Hence other
current techniques are of prime importance too.
These other notations and even other forms of formal
modelling should be applied when representing
systems. From a modelling perspective the rule of
more is better applies to diversity of different types
of notations that can be all used for representation.

VI. DISCUSSION

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.104 Volume 16, 2022

E-ISSN: 1998-4464 857

This work has presented a simplified but powerful
novel algebraic notation that us useful for
representing Petri Net structures. Obviously it cannot
solve all the representational problems inherent in
Petri net modeling. Hence the use of this notation is
envisaged in collaboration with other methods and
techniques. Petri nets are powerful formalisms for
representing concurrency mechanisms at a low-level.
There is a lot of support for Petri nets in the computer
science community. It is hoped that this work will
inspire more research and new developments to
continually improve this powerful modeling notation
of Petri nets that now has well over four decades of
coverage.

[1] T. Murata, “Petri Nets: Properties, Analysis and
Applications”, Proc. Of the IEEE, Vol 74 issue
4, IEEE, 1989, pp.541-89.

[2] M. Zhou, K. Ventkatesh, “Modelling Simulation,

and Control of Flexible Manufacturing Systems,

A Petri Net Approach”, World Scientific, 1999.
[3] K. van Hee, “Information Systems: A Formal

Approach”, Cambridge Univ. Press, 2009.
[4] A. Knopfel et al., “Fundamental Modeling

Concepts”, Wiley; 2005.
[5] A. Spiteri Staines, “An Introduction to Bi-

Directional Transition Network Modeling”,
International Journal of Computers, IARAS,
Vol. 2, 2017.

[6] A. Spiteri Staines, “Matrix Representations for
Ordinary Restricted Place Transition Nets”,
WSEAS Transactions on Computers, Vol 16,
2017.

[7] A. Spiteri Staines, Modelling Simple Network
Graphs Using the Matrix Vector Transition Net,
CSSCC 2016, INASE, Vienna, 2016.

[8] T. Spiteri Staines and F. Neri, “A Matrix
Transition Oriented Net for Modeling
Distributed Complex Computer and
Communication Systems”, WSEAS Transactions

on Systems, Vol. 13, 2014, pp. 12-22.
[9] T. Spiteri Staines, Concurrency Issues in

Ordinary Petri Nets, Communicating Process

Architectures, Vol. 70, 2017, pp. 101-110.
[10] A. Spiteri Staines, Algebraic Representation for

Ordinary Place Transition Petri Nets,
INTERNATIONAL JOURNAL OF CIRCUITS,
SYSTEMS AND SIGNAL PROCESSING, Vol.
11, NAUN,2017, pp. 300-305.

[11] A. Spiteri Staines, Implementing a Matrix
Vector Transition Net, BJMCS, Vol. 4, Science
Domain, 2014, pp. 1921-1940.

[12] A. Spiteri Staines, Graph Drawing Approaches
for Petri Net Visualisation and Representation,
WSEAS TRANSACTIONS on INFORMATION

SCIENCE and APPLICATIONS, vol 17, 2020,
pp. 110-116.

[13] B. Cliff et. al., Case Studies in Systematic

Software Development, Pretence Hall, 1990.
[14] D. Lightfoot, “Formal Specification using Z”,

Palgrave 2001, ISBN 0-333-76327-0, Ch 6, pp.
37 – 97.

[15] R. Davidrajuh, Petri Nets for Modeling Large

Discrete Systems, Springer, 2021.
[16] I. Flores De La Mota et. al., Robust Modelling

and Simulation, Springer, 2017.
[17] S.K. Chang, “Principles of Pictorial Information

Systems Design”, Pretence Hall, 1989.
[18] R. Milner, A Calculus of Communicating

Systems, Springer- Verlag, 1980.
[19] C.A.R. Hoare, Communicating Sequential

Processes, Pretence Hall, 1985.
[20] R. Tamassia, G. Di Battista, C. Batini,

Automatic Graph Drawing and Readability of
Diagrams, IEEE Transactions on systems, Man

and cybernetics, Vol: 18, no: 1, 1988, pp. 61-79.
[21] G. Di Battista, P. Eades, R. Tamassia, I.G.

Tollis, Graph Drawing Algorithms for the

Visualization of Graphs, Pretence Hall, 1998.

Contribution of individual authors to

the creation of a scientific article

(ghostwriting policy)

Author Contributions: All the work in the paper
was carried out by Anthony Spiteri Staines. Sections
1-7 and the abstract are the complete work of
Anthony Spiteri Staines. This work considerably
builds upon and greatly improves previous work by
Anthony aka Tony Spiteri Staines presented in
Concurrency Issues in Ordinary Petri Nets,
Communicating Process Architectures, Vol. 70,
2017, pp 101-110 and Algebraic Representation for
Ordinary Place Transition Petri Nets, Naun, 2017.

Sources of funding for research

presented in a scientific article or

scientific article itself

REFERENCES:

All the funding for this work comes from the
University of Malta, Malta. Research Project
Funding.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

VII. CONCLUSION

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.104 Volume 16, 2022

E-ISSN: 1998-4464 858

