
Based on the results obtained in the work of the
doctoral thesis [20] and on the results presented in
[21], we have extended the work proposing differ-
ent convolutionally-based stegoschemes and design-
ing better stegoschemes based on convolutional codes
under linear systems theory. In this paper, we present
these results that are an application of convolutional

coding theory in steganography. As we know, block
codes are largely used for dissimulation of informa-
tions in a steganographic process, such as in [2, 5],
where the syndrome coding method is used for most
cases.

Here, we suggest a steganographic protocol based
on convolutional codes defined under linear systems
theory. As it is known, convolutional codes can be
given by a quadruple of matrices (A,B,C,D) rep-
resenting discret linear dynamical systems (see [6]),
which can be the support for an embedding protocol of
a message m into a cover object u, with as little mod-
ification as possible. The use of convolutional codes
allows using the structural properties of systems the-
ory that facilitate decoding [7]. The structural proper-
ties of the convolutional codes are useful to find condi-
tions on the convolutional code that allow to maintain
the imperceptibility of the change in the cover, regard-
less of the cover or the message to be hidden;

This paper is organized as follows: right after the
introduction, the second section presents steganogra-
phy in general; then, the third will be about conceiv-
ing some convolutional codes under linear systems,
the fourth one will be reviewing the relationship be-
tween steganography and coding, as well as the syn-
drome coding method. The last section is concerned
with steganography and convolutional coding, where
we suggest both an embedding and an extracting al-
gorithm, for which the space and time complexity of
the dissimulation are very much decreased compared
to the trellis’ approach, and illustrated by examples.
That new method invoked is based upon a new de-
coding method specifically designed for convolution-
als, which is linear and inspired by the linear systems
point of view of convolutional codes.

Steganography is a form of protection of commu-
nication, as it is known as a technique being used in
order to protect some information to be exchanged by
hiding its original existence, onto some digital files,
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could it be photographies or videograms. As it is well
known, cryptography is the technique and science be-
hind the protection of messages and information to be
transmitted, whereas the idea of steganography is ac-
tually to prevent a nasty observer to even detect the
need for that protection beforehand, and it is also de-
pending on the situations, as for instance in places
where cryptography cannot be used. Sometimes, it is
also possible to mix both techniques for protection of
communication and information as well. The classic
example known to illustrate use of a steganographic
scheme is the prisoner’s problem. In that scheme,
Alice and Bob are two prisoners imprisoned in sep-
arate cells, and need to plan their escape; they can
only communicate under the surveillance of a war-
den, so undetectability is imperative throughout their
exchange [5].

Characteristics of a steganographic scheme

A steganographic scheme is characterized by
some necessary conditions and components which
are: (see [13, 18, 19])

i) the choice of a communication support

ii) the message to be embedded

iii) embedding function

iv) extracting function

v) optional steganographic key-management

The embedding and extracting functions as their
names show consist of functions responsible for hid-
ing messages or information. For digital steganogra-
phy, as it is our case, the purpose is to hide or em-
bed a sequence of bits in that digital cover, within
some conditions such as making sure that the change
is not visually perceptible. Knowing that the choice
of covers is quite large in digital media (graphic files,
messages, etc), and also dictated by the nature of the
information to embed, the performance of a stegano-
graphic method can be assessed over a certain cover
object mainly by its average distortion and its embed-
ding rate.

For instance, a very popular method used in digi-
tal steganography is called Least Significant Bit (LSB)
steganography, and it consists of hiding information
within a graphic file, by replacing the least significant
bits of specifically selected pixels by message bits,
in such a way that they are “visually imperceptible”.
([10, 11])

Definition 1. Let k and n be two integers, and A a
finite field. A digital steganographic scheme S of type

[k, n] over a finite alphabet A is a pair of functions:

emb : An ×Ak −→ An

rec : An −→ Ak

such that

rec(emb(c,m)) = m for all c ∈ An and m ∈ Ak,

with m being the secret message, and c the cover vec-
tor.

The scheme is denoted as: S(emb, rec).
Note that if c′ = emb(c,m), then rec(c′) = m

For the scheme S, the following characteristics
are of importance:

a) the cover length n

b) the embedding capacity k

c) the embedding radius r, defined by:

r = max{d(c, emb(c,m)) | c ∈ An,m ∈ Ak}.

where d is the Hamming distance

d) the average number of embedding changes Ra,
given by:

Ra =
1

qkn

∑
d(c, emb(c,m))

where q = ]A; (see [13])

Proposition 2 ([15]). Let S = (emb, rec) be a
steganographic scheme of type [n, k] defined over an
alphabet A. Then:

1) the map rec is surjective;

2) for fixed c ∈ An, the map emb(c,−) : Ak −→
An is injective.

In particular, k ≤ n.

Proof. From the condition rec(emb(c,m)) = m.

Knowing that the purpose of a stegoscheme is to
embed as much information as possible, with as few
changes as possible, we have the definition of a proper
scheme;

Definition 3. A steganographic scheme S =
(emb, rec) is said to be proper if the number of
changes produced in the cover is the minimum pos-
sible allowed by the recovering map.

d(c, emb(c,m)) =
d(c, rec−1(m)), for all c ∈ An and m ∈ Ak

where the notation rec−1(m) is used to denote an ar-
bitrary recovery of m.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2022.16.100 Volume 16, 2022

E-ISSN: 1998-4464 812



We have the following proposition:

Proposition 4 ([15]). Let S = (emb, rec) be a
steganographic scheme of type [n, k] over A. There
exists a proper stegoscheme S∗ = (emb∗, rec) of the
same type [n, k] such that Ra(S∗) ≤ Ra(S).
Proof. The proof of the proposition can be found in
[15] .

In practice, we are interested in practical meth-
ods that can embed an m-bit message in an n-
element cover, while keeping the expected distortion
E[D(x,Emb(x,m))] as small as possible [5]. In syn-
drome coding, the embedding and extraction map-
pings are realized using a binary linear code C of
length n and dimension n−m:

Emb(x,m) = arg miny∈C(m) D(x, y)

Ext(y) = Hy,

where H ∈ {0, 1}m×n is a parity-check matrix of
the code C, C(m) = {z ∈ {0, 1}n,Hz = m}
is the coset corresponding to syndrome m, and all
operations are in binary arithmetic.

Let us first assume that the set of single-letter
distortions is bounded by a constant, 0 ≤ ρi < C.
Let us denote that the following distortion profiles
are of interest in steganography, and will be used for
benchmarking the proposed methods:

• the constant profile, ρ(x) = 1, when all pix-
els have the same impact on detectability when
changed;

• the linear profile, ρ(x) = 2x, when the distor-
tion is related to a quantization error uniformly

distributed on
[
−Q

2
,
Q

2

]
for some quantization

step Q > 0;

• and the square profile, ρ(x) = 3x2, which can
be encountered when the distortion is related to
a quantization error that is not uniformly dis-
tributed.

A convolutional code is a type of error-correcting
code in which each k-bit information symbol (each k-
bit string) to be encoded is transformed into an n-bit

symbol, k/n being the code rate and the transforma-
tion is a function of the last information symbols con-
tained in the memory of the physical encoder. Those
are block codes over polynomial rings.([3])

Definition 5. [16] A convolutional code of length n
and dimension k is a k-rank submodule of Fnq [z].

Corollary 6 ([17]). Let C be a convolutional code.
Then there exists a polynomial matrix G(z)

(called encoder) of size n × k and having maximal
rank such that

C={v(z) | ∃u(z) ∈ Fk[z], v(z) = G(z)u(z)}. (1)

We denote by νi the maximum of all degrees of
each of the polynomials of each line i, i = 1, . . . , n,
we define the complexity of the encoder as δ =∑n

i=1 νi, and finally we define the complexity of a
convolutional code δ(C) as the maximum of all de-
grees of the largest minors of G(z) that we will write
simply by δ if no confusion is possible [9].

Given a convolutional code C with its encoding
matrix G(z), there always exists its first-order repre-
sentation, and a quadruple (A,B,C,D) associated to
G(z) given by the equations{

x(t+ 1) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(2)

where A ∈ Mδ(F), B ∈ Mδ×k(F), C ∈ Mp×δ(F),
D ∈Mp×k(F) (with p = n−k) are constant matrices
over the field F, and u(t) ∈ Fk, x(t) ∈ Fδ, y(t) ∈ Fp
are the input, state and output vectors, respectively; (t
is a discrete variable: t ∈ N).

We will denote a system simply as the quadruple
of matrices (A,B,C,D).

Theorem 7. Let C ⊂ Fn be a k/n convolutional
code, of complexity of convolutional code δ. Then,
there exist matrices K, L of sizes (δ+ n− k)× δ, and
a matrix M , of size (δ+n− k)×n, with entries in F,
such that the convolutional code C is defined by

C = {u(z) ∈ Fn[z]|∃x(z) ∈ Fδ[z] :
zKx(z) + Lx(z) +Mu(z) = 0}.

From Theorem 7 and taking into account the fol-
lowing proposition

Proposition 8. Let (K1, L1,M1) be another repre-
sentation of the convolutional code C. Then there ex-
ist invertible matrices T and S of adequate sizes, such
that

(K1, L1,M1) = (TKS−1, TLS−1, TM).

We have the following corollary
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Corollary 9. The triple (K,L,M) can be written as:

K =

(
−Iδ
0

)
, L =

(
A
C

)
, M =

(
0 B

−In−k D

)
.

And we deduce the following one:

Corollary 10.

C = {v(z) ∈ Fn[z] | ∃x(z) ∈ Fδ[z] :(
zI−A 0 −B
−C I −D

) ( x(z)
v(z)

)
= 0}

With initial condition x(0) = 0, a solution of
system (2) can be obtained by making use of the Z-
transform. Let u(z), x(z), y(z) be the Z-transforms
of the variables u, x, y of a time- invariant linear sys-
tem. Then by applying the Z-transform to the equa-
tions of the system we have{

zx(z) = Ax(z) +Bu(z)
y(z) = Cx(z) +Du(z)

(3)

and as a result we have

y(z) = (C(zIδ −A)−1B +D)u(z), (4)

which is the transfer function of the system, and
C(zIδ −A)−1B +D is the transfer matrix.

Control concepts: Controllability and Observabil-
ity

In control systems theory the major concepts are
controllability and observability, introduced by R.
Kalman in 1960 ([12]).

Definition 11. A linear system (A,B,C,D) is a con-
trollable system if the controllability matrix

C =
(
B AB A2B . . . Aδ−1B

)
(5)

of the system has full rank δ, where δ is the complexity
of the code.
Equivalently (Hautus test [8]), a linear system
(A,B,C,D) is controllable if and only if

rank
(
zIδ −A B

)
= δ, for all z ∈ F, (6)

where F denotes the algebraic closure of F.

Definition 12. A linear system (A,B,C,D) is said to
be observable if the observability matrix

O =


C
CA
CA2

...

CAδ−1

 (7)

of the system has full rank δ,
or equivalently (Hautus test), a linear system
(A,B,C,D) is observable if and only if

rank
(
zI−A

C

)
= δ, for all z ∈ F, (8)

where F denotes the algebraic closure of F.

Calling T`(A,B,C,D) (that we simply write T`
if no confusion is possible) the matrix

T` =


C D
CA CB D
CA2 CAB CB D
...

. . .
. . .

CA` CA`−1B CA`−2B . . . CB D

 .

(9)

We have the following.

Proposition 13. A system (A,B,C,D) is output observ-
able if and only if the matrix T` has full row rank for all
` ∈ N.

Proof. The proof of the proposition can be found in ([6])
.

There are some interesting steganographic protocols
that have already been defined from coding theory, consid-
ering the fact that error-correcting codes are used in order
to detect and/or correct errors, during data transfer. If we
consider for instance some of the methods involving the
existence of the parity check matrix, we can implement
syndrome coding. Considering a steganographic protocol
within the spatial domain of gray scale image, inspired by
[14]. This approach suggests to divide the cover block into
blocks of equal sizes.

For instance, let us consider the following protocol
having the cover object v whose LSB (Least Significant
Bits) values are given by v = {v0, v1, . . . , vn} over Fn2 , the
message m = {m0,m1, . . . ,mt} with t < n over Ft2, the
code given by its parity matrix H.
Embedding m into v produces the stego object r =
{r0, r1, . . . , rn}, given by the relation:

m = r.Ht (10)

In order to extract m, it is the equation (10) that is used.
After embedding, some of the bits of the cover block are
modified (either 0 or 1); if we consider e, the flip pattern
representing the modified bits of that cover block, the stego
object in polynomial form is given by:

r(X) = v(X) + e(X) (11)

From both equations (10) and (11), we have:

m− v.Ht = e.Ht (12)

which gives us the extraction formula (formula to recover
the original messagem, which had been previously embed-
ded).
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Example 14. In the case of the F5 algorithm [22], the
technique used with an [n, n−k, 1]-code consists of embed-
ding k bits into an n-length cover sequence by changing at
most 1 bit.

This method is called the syndrome coding, and from
a steganographic point of view, we need to find a minimal
number of flips of e(X) to decrease modification.

Before going any further, let us recall some notions
involved within the construction of the steganographic pro-
tocol based on coding.

From what we already get out of the traditional
steganographic procedure, the idea is to suggest an efficient
steganographic protocol that is implementable on convolu-
tional encoding/decoding. As we know, there exists sev-
eral steganographic protocols defined over error-correcting
block codes, within the decoding method actually used to
detect and correct errors, in order to introduce a minimum
amount of errors, as few as possible [15]. We are using
the same approach on our own steganographic model here,
with the twist and particularity of convolutional codes,
which requires for the sequential characteristic of the im-
plementation, for instance embedding of a sequence while
transmission of a message, file or image during an unde-
termined, or semi-infinite sequence of time. We are also
inspired by [4], and [1] which still goes a very different di-
rection. Indeed, the general plan is to introduce “as little
modification as possible”, onto the cover sequence, in or-
der to embed another digital sequence (preferably, of less
length).

As we are trying to get there, some key points we have
to cover are:

1. the conditions for the steganographic scheme to be
established, which means rec and emb functions to
be right, and well described.

2. the conditions for the modified subsections, which is
the bound on the flipping bits, the bits that are being
altered while embedding, in order to alter the least
bits possible;

3. the classical bound of imperceptibility as far as the
embedding radius r.

The idea here [5] is to create efficient syndrome-

coding schemes for an arbitrary α ≤ 1

2
, since many

results suggest that secure payload for digital image

steganography is always far below
1

2
. The idea is to select

the parity-check matrix H in a special form that allows
representing every solution of Hy = m as a path through a
trellis. The optimal y closest to x is then found using the
Viterbi algorithm.

In this case, the parity-check matrix H is obtained
by placing small submatrices Ĥ of size h×w, next to each
other and shifted down by one row, which leads to a sparse,
banded H. The height h of the submatrix, also called the
constraint height, is a design parameter that affects the
algorithm speed and efficiency (typically, 6 ≤ h ≤ 15).
The width of Ĥ is dictated by the desired relative payload

α: if α is equal to
1

k
for some k ∈ N, select w = k. For

general payloads α, find k such that
1

k + 1
< α <

1

k
. The

matrix H will contain a mix of submatrices of width k and
k + 1 so that the final matrix H is of size [αn]× n. In this
way, we can create a parity-check matrix for an arbitrary

rational α ≤ 1

2
.

So, we assume α =
1

w
and thus the matrix H is of

the size b× (b.w), where b is the number of copies of Ĥ in
H.

In this subsection, we show our construction and
implementation of the steganographic scheme based
on convolutional codes, most specifically based on the
convolutional codes approach based on linear systems,
unlike in [4]. As already defined earlier, we consider our
convolutional codes, by their realization representation
given by the quadruple of matrices (A,B,C,D). Before
going any further, let us introduce some notions we use
throughout the process.

Definition 15. The quasi-syndrome denoted by s is the
value from which we choose the estimated pertubation e
for embedding m into u, at each step t ∈ {0, 1, . . . , `} of
the embedding process.
It is given by: s(t) = He(t).

Let (A,B,C,D) be a system representing a convo-
lutional code. We denote by τ the minimum number of
linearly-dependent columns of D.

By analogy to block coding theory, τ can be related to
the minimal distance of a block code whose parity check
matrix is represented by D.

B. Syndrome-trellis codes and Implementation 

C. Proposition of different convolutionallybased 

Stegoschemes 

A. The purposes and interest 

VI. STEGANOGRAPHY AND 
CONVOLUTIONAL CODING 
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For the realization representation scheme, we are us-
ing the decoding method and protocol implemented for this
specific representation of convolutionals, by involving the
output-observability matrix T` given by the matrix (9).
Indeed, the decoding procedure in this case consists of
solving the system:

T`

(
x(0)
u

)
= y. (13)

We recall that it is usual to consider the initial state of
the system x(0) = 0, as in our case for instance; therefore,
our new output-observability matrix is reduced to:

T̂`−1 =


D
CB D
CAB CB D
...

. . .
. . .

CA`−1B CA`−2B . . . CB D

 (14)

In order to do the embedding, the process goes by con-
sidering the output-observability matrix as the parity check
matrix. The model of steganography we build is inspired by
the (A,B,C,D)-representation of the convolutional code.
Knowing that we are normally using its structure on convo-
lutional codes for the decoding, step by step ([7]), when it
comes down to steganography it is our base for the embed-
ding function. In this case, we decide to approach it in a se-
quential fashion which means that for each step of the time-
related steganographic process, at each t = 1, . . . , `, the
protocol consists of “embedding” the message sequence,
by altering lightly the cover sequence with some error, in
order to build the stego-sequence. In order to do so, we
need to figure out the best sequence corresponding to the
flipping bits that minimizes the modification, which cor-
responds to the coset leader of the list of potential “error
vectors e(t)” for embedding m(t) in u(t) by the formula:
u(t) + e(t).

When it comes to the retrieval of the hidden message,
that is when the actual output-observability matrix explic-
itly appears for the solving of the corresponding equation
([6]). Indeed, the recovery process of the embedded
message consists of the encoding of the stego-sequence.
On the other hand, it is also an analogy of the syndrome
steganographic protocol method, in order to retrieve the
hidden message; actually, the idea is to extract at each
step from the stego-sequence, using the control ”block of
matrices“, each part of the current embedded message.

The following algorithm provides the method for the
embedding process.

Embedding algorithm for embedding function emb
Input: Message m, Cover sequence u
Output: Stego-sequence St

1: if rankD is row maximal then
2: for t:=0 to ` do

3: s(t) = m(t) − Du(t) −∑t−1
k=0 CA

t−1−kB(u(k) + e(k));
4: list sysdTableD = {e(t)};
5: compute mine∈list w(e(t));
6: pick and store one corresponding e(t);
7: St(t) = u(t) + e(t);
8: end for
9: St = (St(0), . . . , St(`))

10: else
11: Choose an adequate code with D corresponding
12: end if

The next algorithm is used to extract the embedded
message.

Extracting algorithm for recovery function rec
1: m = T̂`−1

(
u+ e

)
2: for t:=0 to ` do
3: m(t) = Du(t) + De(t) +∑t−1

k=0 CA
t−1−kB(u(k) + e(k)); In F2, let us

consider the code C(A,B,C,D) defined by the list
sysdTableD = {e(t)};

4: end for
5: m(t) = (m(0), . . . ,m(`))

Example 16.

A =


1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0

 , B =


1 0 0
0 1 0
0 0 1
0 0 1

 ,

C =

(
1 1 0 1
1 0 1 1

)
, D =

(
0 1 0
0 1 1

)
We observe that the system is output-observable.
Let us consider the message to be embedded be

m = (m(0),m(1),m(2)), and is done so within those
sections, at each step, in a cover sequence denoted by u.

Let us consider m = (10, 00, 01)
We consider that given each input sequence u, we will

try to find out characteristics of each sequence e of the flip-
ping bits that were added to u, in order to embed the mes-
sage m. The corresponding quasi-syndrome is denoted by
s.

Consider the decoding matrix for the convolutional
codes given by:

T̂`−1 =


D
CB D
CAB CB D
...

. . .
. . .

CA`−1B CA`−2B . . . CB D


At each step here: 0, 1, . . . , `, we will be try to evaluate our
error value e

We already have: m = T̂`−1
(
u+ e

)
As inputs, we have m and u.
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First of all, let us assess the coset of potential errors
e; as a general formula, m and u are given by: m(t) =∑t−1
k=0 CA

t−1−kB(u(k) + e(k)) +D(u(t) + e(t)); which
means that:

De(t) = s(t) = m(t)−
t−1∑
k=0

CAt−1−kB(u(k)+e(k))−Du(t)

Going through all possible cases of syndromes (or cover
sequences), we get the coset of errors e.

s e
0 0 0 0 0

1 0 0

1 0 0 1 1

1 1 1

0 1 0 0 1

1 0 1

1 1 0 1 0

1 1 0

Therefore, at each step, there is always a sequence e
that can be used for embedding such that: w(e) ≤ 2.

Let us work with u = (111 010 001) having
m = (10, 00, 01).

At step t = 0, we have: D(u(0) + e(0)) = m(0)

Then, s = (0 0), and e(0) = (0 0 0)

At step t = 1, we have: D(u(1) + e(1)) = m(1) −
CB(u(0) + e(0))

Then, s = (0 0), we pick e(0) = (0 0 0) and e(1) = (0 0 0)

At step t = 2, we have: D(u(2) + e(2)) = m(2) −
CAB(u(0) + e(0))− CB(u(1) + e(1))

Then, s = (1 0), and e(2) = (0 1 1).

Then, for u = (1 1 1, 0 1 0, 0 0 1) , we can
embed m = (10, 00, 01) with the flip pattern:
e = (0 0 0, 0 0 0, 0 1 1).

For this operation, we embedded 6 bits in a 9-length
cover sequence by changing 2 bits.

This specific subsection is about the design, and im-
plementation of a revamped version of the steganographic
scheme we suggested earlier, based on the convolutional
codes approach based on linear systems, with their real-
ization representation given by the quadruple of matrices
(A,B,C,D). In fact, in order to obtain a desirable design,
with performance close to the bound, we will be inspired in
our implementation and new scheme, with the work before
us, from J. Fridrich and al, pertaining the approach from
which we derive greater evaluation for the relative paoy-
load α, the embedding efficiency e=

α

d
, with relation to the

best profile we decide to adapt to our examples.
From the previous paragraph, given that our output-

observability matrix is used as the parity-check matrix,
from the embedding process, the model of steganography
we build is yet inspired by the (A,B,C,D)-representation
of convolutional codes. However, in order to obtain simi-
lar performance outputs as in [5], we will have to incorpo-
rate major changes, especially in the hope of respecting the
banded structure of H.
For our new parity-check matrix, we will consider cases of
A being the null matrix, i.e

A = 0

. Indeed, we are aware that H is built up on submatrices Ĥ,
with special constraint height h, as well as width w from
which we compute the relative payload α, and experience
great embedding efficiency e =

α

d
.

So, for our new model, in order to be in alignment with the
sparse banded representation of H, we will only consider
such cases, as mentioned earlier.
Which leads to the decoding matrix:

T̂`−1 = H =


D
CB D

CB D
.. .

. . .

CB D


In our own construction of the parity-check matrix, the

submatrix Ĥ is given by:

Ĥ =

(
D
CB

)
Therefore, the new algorithms providing methods for

embedding, as well as recovery are:

Embedding algorithm for embedding function emb
Input: Message m, Cover sequence u
Output: Stego-sequence St

1: if rankD is row maximal then
2: for t:=0 to ` do

D. Design of better stegoschemes based on 
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3: s(t) = m(t)−Du(t)−CB(u(t−1)+e(t−1));
4: list sysdTableD = {e(t)};
5: compute mine∈list w(e(t));
6: store one corresponding, coset leader
eleader(t);

7: St(t) = u(t) + eleader(t);
8: end for
9: St = (St(0), . . . , St(`))

10: else
11: Choose an adequate code with D corresponding
12: end if

The next algorithm is used to extract the embedded
message.

Extracting algorithm for recovery function rec
1: m = T̂`−1

(
u+ e

)
2: for t:=0 to ` do
3: m(t) = Du(t)+De(t)+CB(u(t−1)+e(t−1));

In F2, let us consider the code C(A,B,C,D) defined
by the list sysdTableD = {e(t)};

4: end for
5: m(t) = (m(0), . . . ,m(`))

Implementation design details
For our implementation instances, we will be respecting
performance measures, as suggested in [5].
Thus, our constraint height h and relative payloads α are

selected w.r.t. h ∈ {6, . . . , 12} and α =
1

w
, with w ∈

{2, . . . , 20}

Example 17.

A =
(
0
)
, B =


1 0 0 0 1
0 1 0 0 0
1 0 0 1 0
0 0 0 0 1
1 1 1 0 1
0 1 1 0 0



C =

1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 0 1 1

 , D =

1 1 0 0 0
0 0 1 1 0
1 0 1 0 1


We observe that the system is output-observable.
Let us consider the message to be embedded be

m = (m(0),m(1),m(2)), and is done so within those
sections, at each step, in a cover sequence denoted by u.

Let us consider m = (111, 100, 001)

We consider that knowing each input sequence u, we
will try to find out characteristics of each sequence e of the
flipping bits that were added to u, in order to embed the
message m. The corresponding quasi-syndrome is denoted
by s.

Consider the decoding matrix for the convolutional

codes given by:

T̂`−1 =


D
CB D

CB D
.. .

. . .

CB D


At each step here: 0, 1, . . . , `, we will be try to evaluate our
error value e

We already have: m = T̂`−1
(
u+ e

)
As inputs, we have m and u.
First of all, let us assess the coset of potential errors

e; as a general formula, m and u are given by: m(t) =
CB(u(t− 1) + e(t− 1)) +D(u(t) + e(t)); which means
that:

De(t) = s(t) = m(t)−CB(u(t− 1)+ e(t− 1))−Du(t)

Going through all possible cases of syndromes (or
cover sequences), we get the coset of errors e. Here, we
only store the ones with minimum weight.

s e (w < d)
0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1

0 1 0 0 0 0 1 0

1 0 0 0 1 0 0 0

0 1 1 0 0 1 0 0

1 0 1 1 0 0 0 0

1 1 0 0 1 0 1 0

1 1 1 0 1 1 0 0

Therefore, at each step, there is always a sequence e
that can be used for embedding such that: w(e) ≤ d − 1
(d = 3).

Let us work with u = (11011 01000 10101) having
m = (111, 100, 001).

At step t = 0, we have: D(u(0) + e(0)) = m(0)
At step t = 1, we have: D(u(1) + e(1)) = m(1) −

CB(u(0) + e(0))
At step t = 2, we have: D(u(2) + e(2)) =

m(2)− CB(u(1) + e(1))

Then, at step t = 0, s = (1 0 1), and e(0) =
(1 0 0 0 0);
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at step t = 1, s = (0 0 0), and e(1) = (0 0 0 0 0);
at step t = 2, s = (0 0 0), and e(2) = (0 0 0 0 0)
Then, for

u = (1 1 0 1 1, 0 1 0 0 0, 1 0 1 0 1),

we can embed

m = (111, 100, 001)

with the flip pattern:

e = (1 0 0 0 0, 0 0 0 0 0, 0 0 0 0 0).

For this operation, we embedded 9 bits in a 15-length
cover sequence by changing only 1 bit.

For this particular case, our submatrix

Ĥ =

(
D
CB

)
=


1 1 0 0 0
0 0 1 1 0
1 0 1 0 1
0 1 1 0 1
1 1 0 0 1
0 0 0 1 1


is of size: h × w, with h = 6, and w = 5. Then, we can

deduce that the relative payload α =
1

5
, and the embedding

efficiency e =
α

d
, with d being the expected per-element

distortion. That element been given by:

d(α) =
E[D(x,Emb(x,m))]

n

, we can assess our final embedding efficiency e.
Considering we are working with the constant profile, in

this case, because we only changed 1 bit, d =
1

15
, and

e = 3.

Example 18. Given the syndrome table, and remembering
that we store the syndromes of minimum weight:

s e (w < d)
0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0

0 1 1 0 0 0 0 1 0 0

1 0 1 0 0 0 0 0 0 1

1 1 0 0 0 0 1 0 0 0

1 1 1 0 0 0 0 0 1 0

Let us consider instead the convolutional code, given
by:

A = (0) , B =


1 0 0 1 1 0 1
0 1 0 0 0 1 1
1 1 0 1 0 0 0
0 1 1 1 1 1 1
1 0 1 1 0 0 1
1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 0 0 1 0 0 0



C =

(
1 1 1 1 1 1 1 1
0 1 1 1 0 1 0 1
1 1 0 0 0 1 0 0

)
, D =

(
1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

)
At step t = 0, we have: D(u(0) + e(0)) = m(0)

At step t = 1, we have: D(u(1) + e(1)) =
m(1)− CB(u(0) + e(0))

At step t = 2, we have: D(u(2) + e(2)) =
m(2)− CB(u(1) + e(1))

Then, at step t = 0, s(0) = (1 0 0), and e(0) =
(1 0 0 0 0 0 0),
at step t = 1, s = (0 1 1), and e(1) = (0 0 0 0 1 0 0)
at step t = 2, s = (1 0 1), and e(2) = (0 0 0 0 0 0 1)
for the same u = (1 1 0 0 1 1 0, 0 0 1 0 0 1 1, 1 0 0 1 0 1 0),
we can embed m = (110, 010, 011) with the flip pattern:
e = (1 0 0 0 0 0 0, 0 0 0 0 1 0 0, 0 0 0 0 0 0 1)

For this operation, we embedded 9 bits in a 21-length
cover sequence by changing only 3 bits.

For this particular case, our submatrix

Ĥ =

(
D
CB

)
=


1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1
0 0 0 1 1 1 0
0 1 1 1 0 0 0
0 1 0 1 0 1 0


is of size: h × w, with h = 6, and w = 7. Then, we can

deduce that the relative payload α =
1

7
, and the embedding

efficiency e =
α

d
, with d being the expected per-element

distortion. That element been given by:

d(α) =
E[D(x,Emb(x,m))]

n

, we can assess our final embedding efficiency e.
Considering we are working with the constant profile, in

this case, because we only changed 3 bit, d =
1

7
, and e =

1.

In order to define our convolutional code for the proper
stegoscheme, according to our protocol, the following nec-
essary condition is requested.

D.1 Functions embedding and recovery 
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Proposition 19. Let (A,B,C,D) be a representation of a
convolutional code C, with A ∈ Mδ(F), B ∈ Mδ×k(F),
C ∈ Mp×δ(F), D ∈ Mp×k(F) (with D 6= 0 and p =
n− k). Let p < k.
A necessary condition for building a stegoscheme from C is
that rankD be row maximal.

Here are some conditions applying to the modification
of the cover sequence when embedding.

Proposition 20. Let (A,B,C,D) be a representation of a
convolutional code C for a steganographic scheme S. Then,
at each step t of the convolutional sequence, the flipping
sequence e introduced for embedding m in u can be given
by the formula:

De(t) = m(t)−Du(t)− CB(u(t− 1) + e(t− 1))

Proof. Having that the embedding of m is given
by: m = T̂`−1

(
u+ e

)
, and having: T̂`−1 =

D
CB D

CB D
.. .

. . .

CB D

, we can deduce the re-

sult.

Proposition 21. Let (A,B,C,D) be a representation of a
convolutional code C for a steganographic scheme S. Let
us consider embedding m in u, with error sequence e. Let
D have all of its columns non-zero and distinct.
Then, for each step t of the convolutional sequence: ∃ e(t)
such that w(e(t)) ≤ d− 1.

Proof. Considering T̂`−1 the control matrix, the embed-
ding of m is given by: m = T̂`−1

(
u+ e

)
;

at each step t, we have: De(t) = s(t).
Let us consider Dj the columns of D; knowing that

d is the minimal number of linearly-dependent columns of
D, for all t, for s(t) 6= 0, there exists n columnsDj such
that:

∑n
j=1Dj = s(t) = De(t) 6= 0, with n ≤ τ − 1;

therefore, w(e(t)) = n ≤ τ − 1; and for s(t) = 0, there is
always e(t) = 0 which verifies: w(e(t)) = 0 ≤ τ − 1.

From there, we can deduce the result.

This proposition follows from the precedent one.

Proposition 22. Let us consider a steganographic scheme
S given by a convolutional code (A,B,C,D), and func-
tions emb and rec. Let D have all of its columns non-zero
and distinct. Then, within an `k-length cover sequence, we
can embed at most `p-length message by modifying at most
`(τ − 1) bits

So, in this work, we suggested a decoding method for
convolutional codes under the linear systems theory, codes
with the parity-check matrix being H, and that would be of
size: b× wb, with b, being the number of copies of Ĥ, and
w being the number of columns of Ĥ. So, we learn from
[5], that in order to find a good submatrix, that has embed-
ding algorithm performance close to the bound, the profile
is not a necessity. But, we already know from both our
embedding and extracting procedures, that for the decod-
ing method, the syndrome approach, the time complexity
is linear, due to the linear decoding method, as well as the
space complexity that decreases from 2h.n to 2h/2.n.
Indeed, for the embedding process, we need the coset of
errors for each syndrome, but we only need to store the
leader, which is the one of minimal weight. So, know-
ing the length n of the cover vector, h being the constraint
height, since: Ĥ is implemented such that:

Ĥ =

(
D
CB

)

, then the number of leaders to be stored are 2h/2, just like
the number of syndromes. Which brings the space com-

plexity to a total of
√
2
h
.n

8
bytes.

We developed a steganographic model, based on the
representation of convolutional codes within linear systems
theory. In fact, the idea resides on considering the output-
observability matrix, along with the encoding/decoding
procedures, used for the convolutional codes. Indeed, the
embedding and recovery algorithms inspired by this alge-
braic computational method, are based upon a novel de-
coding method, built on the linear systems properties and
tools, and the implementation of convolutional codes from
the linear systems theory approach. The stegoscheme,
that was in order to enable us to implement steganogra-
phy for time-related transactions, protection of communi-
cation during an unspecified time, revealed interesting re-
sults, such as linear time complexity, as well as an ability to
hide a tremendous amount of information, with very little
modification. We can also denote an improvement of space

complexity as well, going from 2h.n to 2

h

2 .n, in memory
space (with h: constraint height, and n: length of cover ob-
ject), while implementing conditions for maximal bounds ,
within specified conditions. This work is just a beginning,
but shows a lot of possibilities within the subject, possibil-
ities for reduction of both time and space complexity, and
expansion of opportunities in steganography itself.

VII. CONCLUSIONS 

D.4 Analysis and results 

D.3 Classical bound of imperceptibility 

D.2 Conditions on the modified subsections of 

the cover 
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