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Abstract—In this paper, we review the development of the
traditional graph signal processing methodology, and the recent
research areas that are applying graph neural networks on
graph data. For the popular topics on processing the graph data
with neural networks, the main models/frameworks, dataset and
applications are discussed in details. Some challenges and open
problems are provided, which serve as the guidance for future
research directions.

Index Terms—Graph Signal Processing,Graph Neural Net-
works, Graph Convolutional Networks, Deep Learning

I. INTRODUCTION

Graph signal processing is not a totally new topic, and it has
been developed for years. Traditional graph signal processing
focus more on the spectral analysis of graph. However, with
growing of the data, such as social network, Internet of
Things (IoTs) and E-Commerce, we have entered into the
big data era, which bring more challenges on the traditional
data analytic methodologies. At the same time, with the great
success of deep neural networks applied in image analytics and
natural language processing, and the more intuitive thought
is applying the deep neural networks on the large graph
data. In the following context, we will discuss the traditional
graph signal processing and the challenges, and then focus
more on the graph neural networks developed in the recent
years. The popular applications represented with graph data,
Graph Neural Networks (GNN) models and frameworks will
be discussed in in Section II and Section III respectively. At
last, the new challenges and some open topics will be reviewed
in the Section IV.

A. Graph Signal Processing

Signal processing (SP) is an active area in both research and
engineering domains. There are huge amount of practical use
cases in the applications, and most of those focus on regular
time series data and apply spectral analytic in frequency
domain. With the evolution of the communication network,
more smart devices and data sensors appear. The topology of
those data sources forms a super large graph. Those traditional
signal processing cannot handle the correlations between data
samples from different data sensors effectively, and those
relations between the data samples are irregular graph struc-
ture. Graph consists of both vertices and edges, where the
data values are defined/sensed in vertices and edges connect
these vertices [1]. Graph Signal Processing (GSP) defines the
correlation between data samples and are effectively captured

in time and space by inserting the signal structure onto the
graph, which leads to scalable and flexible approach to many
SP problems [1]. The construction and manipulation of graphs
are mainly focused on spectral graph theory as opposed to SP
on graphs. The spectra of frequency and its basic expansions
are defined by using the tools of spectral graph theory in
the area of SP for Graph Fourier Transforms (GFT) [1] [2].
The frequently used operations in signal processing including
down sampling, convolution, dilation, filtering, modulation
and translation can also be applied on GSP after GFT. More
details about GSP processed in graph spectral domains can
be found in [3]. As analogues to the classical frequency
domain, graph spectral domains highlight the importance of
incorporating the irregular structures of graph data domains
when processing signals on graphs. Although there are some
general frameworks already developed for GSP, there are still
some open issues, and in which the computations of transforms
for signals require the Normalized Graph Laplacian (NGL) on
huge size graph is the largest challenge.

B. Graph Neural Networks

Traditional signal processing (SP) focus on more data
representation and feature extractions, however, most of
these hand-craft operators have been replaced by deep neural
networks, especially in the domains of computer vision
and natural language processing. The similar evolution also
happened in graph signal processing domain, and in which
GNN plays the key role in this evolution. The deep neural
networks have succeeded in several areas in the recent years,
in which the most successful case is the convolutional neural
network (CNN) in image analytic area. There are some main
benefits of CNN: local translational invariance, parameter
sharing, locally connection and hierarchical expression.
Graph methods have played an important role in traditional
machine learning applications for long time, as they provide
a natural way to represent the structure of a dataset [4].
Now the question is can the convolutional neural network be
applied on graph data? The convolutional operation cannot
operated on graph data directly, because local translational
invariance does not apply directly on the Non-Euclidean
structure in spatial domain as shown in Figure 1. In spectral
domain, however, the answer is yes based on the spectral
graph theory discussed in I-A. In space domain, before
applying the convolutional operations, aggregation of the
neighbor vertex is needed as shown in Section III. GNN
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Fig. 1. Euclidean space and Non-Euclidean space [25]

was first proposed in [5], and after that, there are dozens of
variants of GNN models proposed in recent research, such as
[6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20]
[21] [22] [23]. We will discuss more details of these GNN
models in III. In [24], it proves that graph convolutions with
integral Lipschitz filters, in combination with the frequency
mixing effect of the corresponding nonlinearities, yields
an architecture that is both stable to small changes in the
underlying topology and discriminative of information located
at high frequencies. These are two properties that cannot
simultaneously hold when using only linear graph filters,
which are either discriminative or stable, thus explaining the
superior performance of GNNs.

II. APPLICATIONS, DATASETS AND BENCHMARK

As for the applications in real world, there are huge amount
of irregular data. Figure 2 shows different kinds of appli-
cations building from the graph data. The traditional data
analytics can handle the small scale data, however, it will
reach the bottleneck on performance and cannot benefit too
much from big data. The modern artificial intelligence relies
more on big data instead, especially for the deep learning.
Most of the graph datasets in public domain are in small
scale. Until recently, there were some large datasets published
such as [26] [27] [28]. Several benchmarks were also released
on measuring the performance of the machine learning mod-
els [29] [27] and even for GNN [30].

A. Applications with Graph Data

Normally, a graph data structure consists of a collection of
paths or edges, and a collection of nodes or vertices. There
are lots of practical applications of graph data in real life,
such as social network graphs from Facebook or WeChat,
knowledge graph from Wikipedia or Google search engine,
recommendation engines from online Ads or E-Commerce,
communication networks, and the path optimization from
map/route planning or flight planning etc. To implement the
application, we need to build a mathematics model to represent
the application with a graph data structure, and then build
a processing model to analyze the graph data. The datasets
discussed in II-B will be the representations of the graph data.

B. Datasets

Datasets play the key role in deep learning, such as the
ImageNet in image analytics area. It doesn’t only provide the

Fig. 2. The Graph Applications [31]

large scale data for training and evaluation, but also build a
baseline for comparing the performance of different research
models. As for the graph dataset, although there are lots of
applications building with graph data, however, it is hard to
find some well-defined and labeled large scale datasets in
public domain due to the workload and privacy issues. After
reviewed dozens of research papers, we list some commonly
datasets from the public domain, which were also used as the
baseline in most of the papers.

The Cora dataset [32] consists of 2708 scientific publica-
tions classified into one of seven classes. The citation network
consists of 5429 links. The CiteSeer dataset [32] consists of
3312 scientific publications classified into one of six classes.
The citation network consists of 4732 links. The Pubmed
Diabetes dataset [32] consists of 19717 scientific publications
from PubMed database pertaining to diabetes classified into
one of three classes.

Stanford Large Network Dataset Collection or SNAP [26]
collected dozens of large categories of graph datasets, includ-
ing social networks, networks with ground-truth communities,
communication networks, citation networks, collaboration net-
works, web graph, product co-purchasing networks, Internet
peer-to-peer networks, autonomous systems graphs, signed
networks, location-based online social networks, Wikipedia
networks, temporal networks, user actions, Memetracker and
Twitter, online communities, online reviews, face-to-face com-
munication networks and graph classification datasets etc.
There are also different network or graph types in SNAP:
directed, undirected, bipartite, multigraph, temporal, labeled
etc.

TUDatasets [27] is a collection of benchmark datasets for
graph classification and regression. It includes some categories
such as small molecules, bioinformatics, computer vision,
social networks and synthetic.

GraphChallenge [28] encourages community approaches to
developing new solutions for analyzing graphs and sparse
data derived from social media, sensor feeds, and scientific
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Fig. 3. Open Graph Benchmark [29]

data to enable relationships between events to be discovered
as they unfold in the field. In synthetic sparse deep neural
network data for the official 2019 challenge of GraphChal-
lenge [28], the datasets were created using RadiX-Net with
varying number of neurons and layers, from 1024 neurons to
65536 Neurons.

C. Benchmark

The Open Graph Benchmark (OGB) [29] is a collection of
realistic, large-scale, and diverse benchmark datasets for ma-
chine learning on graphs as shown in Figure 3. OGB provide
not only realistic benchmark datasets, but also fully automates
dataset processing with OGB data loaders that automatically
download and process. The most important feature of OGB is,
OGB provides standardized dataset splits and evaluators that
allow for easy and reliable comparison of different models in
a unified manner. OGB uses leaderboards to keep track of the
state-of-the-art [29] as shown in Table I.

Not only a collection of benchmark datasets, TU-
Datasets [27] also offer baseline implementations of stan-
dard graph kernels/graph neural network architecture, and
standard evaluation procedures. In [30], it introduces a re-
producible GNN benchmarking framework, with the facility
for researchers to add new models conveniently for arbitrary
datasets.

III. MODELS AND FRAMEWORKS

Since the first release of GNN model [5], there are huge
amount of GNN models published in different domains. In
[31], it reviewed variants of graph neural networks from
different perspectives, such as graph types in Figure 4, graph
training methods in Figure 5, or even more details in the
propagation step of training as shown in Figure 6. Although
there are lots of variants of GNN models released, they still
follow the same structure of algorithms, as shown in Figure 7.
The only differences among them are aggregation and update
functions.

A. GCN Models

Similar to the CNN models in DNN models, as discussed
in I-B, most of GNN models published in recent years are

Fig. 4. The Graph Types [31]

Fig. 5. The Graph Training Methods [31]

Fig. 6. The Propagation Steps [31]

Fig. 7. The Common Algorithm of GNN Models
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TABLE I
LEADERBOARD FOR OGBG-MOLHIV CAPTURED AT 04/06/2021 [29]

Rank Method Test ROC-AUC Validation ROC-AUC Contact #Params Date
1 Neural FingerPrints 0.8232 ± 0.0047 0.8331 ± 0.0054 Shanzhuo Zhang (PaddleHelix & PGL) 2,425,102 Mar 15, 2021
2 MorganFP+Rand. Forest 0.8060 ± 0.0010 0.8420 ± 0.0030 Cyrus Maher 230,000 Sep 21, 2020
3 P-WL 0.8039 ± 0.0040 0.8279 ± 0.0059 Daniel Marcos Mendoza 4,600,000 Mar 29, 2021
4 DGN 0.7970 ± 0.0097 0.8470 ± 0.0047 Saro Passaro 114,065 Nov 20, 2020
5 DeeperGCN+FLAG 0.7942 ± 0.0120 0.8425 ± 0.0061 Kezhi Kong 531,976 Oct 20, 2020
6 PNA 0.7905 ± 0.0132 0.8519 ± 0.0099 Gabriele Corso 326,081 Nov 25, 2020
7 GCN+GraphNorm 0.7883 ± 0.0100 0.7904 ± 0.0115 Shengjie Luo 526,201 Sep 16, 2020
8 HIMP 0.7880 ± 0.0082 N/A Matthias Fey 153,029 Jun 22, 2020
9 DeeperGCN 0.7858 ± 0.0117 0.8427 ± 0.0063 Guohao Li - DeepGCNs.org 531,976 Jun 16, 2020

10 EGC-M (No Edge Features) 0.7818 ± 0.0153 0.8396 ± 0.0097 Shyam Tailor 317,265 Apr 6, 2021

Fig. 8. Diagram of GNN Model [33]

GCN models. Figure 8 shows a simple structure of GCN
model, in which Linear Transformation and Nonlinear Ac-
tivation are same as the counterparts in CNN, and the main
difference between GCN and the standard multi-layer percep-
tron (MLP) lies in the feature propagation [33]. Most of the
GCN models use graph Laplacian matrix as the fundamental
data structure.
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[14] presents a formulation of CNNs in the context of
spectral graph theory, which provides the necessary mathemat-
ical background and efficient numerical schemes to design fast
localized convolutional filters on graphs, as shown in Equation
(1).

Equation (2) shows the formula to update the hidden layer in
GCN [10], in which H(l) denotes the lth layer in the network,

σ is the non-linearity, and W is the weight matrix for this
layer. D and A represent degree matrix and adjacency matrix,
respectively.

GAT [34] introduces the attention mechanism as a substitute
for the statically normalized convolution operation. Equation
(3) shows the procedure to compute the node embedding
h
(l+1)
i of layer l + 1 from the embedding of layer l.

B. Frameworks Support GNN

TensorFlow [35] is the most widely used neural network
framework, and TensorFlow Graphics aims at making useful
graphics functions widely accessible to the community by
providing a set of differentiable graphics layers (e.g. cameras,
reflectance models, mesh convolutions) and 3D viewer func-
tionalities (e.g. 3D TensorBoard) that can be used in your
machine learning models of choice.

PyTorch Geometric (PyG) [36] is a geometric deep learning
extension library for PyTorch. It consists of various methods
for deep learning on graphs and other irregular structures, also
known as geometric deep learning, from a variety of published
papers.

DGL [37] is an easy-to-use, high performance and scalable
Python package for deep learning on graphs. DGL is frame-
work agnostic, meaning if a deep graph model is a component
of an end-to-end application, the rest of the logics can be
implemented in any major frameworks, such as PyTorch,
Apache MXNet or TensorFlow as shown in Figure 9.

There are some other graph deep learning libraries other
than these three main popular ones introduced here. Stel-
larGraph [38] is a Python library for machine learning on
graphs and networks. The StellarGraph library offers state-
of-the-art algorithms for graph machine learning, making it
easy to discover patterns and answer questions about graph-
structured data. Spektral [39] is a Python library for graph
deep learning, based on the Keras API and TensorFlow 2.
The main goal of Spektral [39] project is to provide a simple
but flexible framework for creating graph neural networks
(GNNs). Euler [40] is a distributed graph deep learning
framework released by Alibaba Open Source.

IV. FUTURE RESEARCH TOPICS

Although the researches on GNNs have made great progress
in recent years, GNNs still face the more challenges in
theoretical research and applications. The limitations of GNNs

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2022.16.91 Volume 16, 2022

E-ISSN: 1998-4464 744



Fig. 9. DGL Overall Architecture [37]

Fig. 10. Architectural vision for GNN accelerators with hardware-software
co-design [47]

include the so-called “bottleneck” issue [41], problems with
over-smoothing [42], and theoretical limits in terms of rep-
resentational capacity [43] [44] [45]. With the vanishing
gradients issue, most state-of-the-art GCN models are no
deeper than 3 or 4 layers, and in [46], it investigated how
to bring proven useful concepts (residual connections, dense
connections and dilated convolutions) from CNNs to GCNs,
and makes GCNs deeper or wider to get better performance,
however, investigations on deep architectures in detail are still
needed due to the computational constraints. In [25], it sug-
gests four future directions of GNNs: model depth, scalability
trade-off, heterogenity and dynamicity. How to accelerate the
performance of GNNs is another hot topic, and there is an
architecture of GNN accelerators with hardware-software co-
design proposed in [47]. There are more challenges in the
heterogeneous network representation learning. [48] provides
a unified framework to deeply summarize and evaluate existing
research on heterogeneous network embedding (HNE). In
this area, however, there are still some limitations of HNE:
like when and why do modern HNE algorithms work better
compared with traditional network mining approaches is still
an open problem. Some other open problems in GNNs, such
as robustness, interpretability, graph pre-training and complex
graph structures were also discussed in [31] in details.

V. CONCLUSION

In this paper, we reviewed the main applications modeled
with graph data and processed with graph neural networks. The
main popular models/frameworks, datasets and benchmarks

are discussed in details. We also provided some challenges and
open problems in GNNs, which will guide the future research
directions.
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