
Detection of IoT based DDoS Attacks by Network
Traffic Analysis using Feedforward Neural Networks

Vanya Ivanova, Tasho Tashev, Ivo Draganov
French Faculty of Electrical Engineering

Technical University of Sofia
8 Kliment Ohridski Blvd., 1756 Sofia

Bulgaria
 Received: July 11, 2021. Revised: December 21, 2021. Accepted: January 14, 2022. Published: January 15, 2022.

Abstract: - In this paper an optimized feedforward

neural network model is proposed for detection of

IoT based DDoS attacks by network traffic

analysis aimed towards a specific target which

could be constantly monitored by a tap. The

proposed model is applicable for DoS and DDoS

attacks which consist of TCP, UDP and HTTP

flood and also against keylogging, data

exfiltration, OS fingerprint and service scan

activities. It simply differentiates such kind of

network traffic from normal network flows. The

neural network uses Adam optimization as a

solver and the hyperbolic tangent activation

function in all neurons from a single hidden layer.

The number of hidden neurons could be varied,

depending on targeted accuracy and processing

speed. Testing over the Bot IoT dataset reveals

that developed models are applicable using 8 or 10

features and achieved discrimination error of

4.91.10-3%.

Key-Words: - IoT, DDoS, keylogging, data

exfiltration, botnet, network traffic analysis,

feedforward neural network

I. INTRODUCTION
Distributed Denial of Service (DDoS) attacks cause
significant financial losses in various industries. A
recent research [1] exposes that a single attack of this
type could cost between USD 120 000 and USD 2
million to targeted businesses with an annual growth
of the size of these activities close to 40%. IoT
devices are more often incorporated in such attacks,
after being intruded and remotely controlled, as
intense generators of requests to online services,
rendering them unusable [2]. Efficient measures to
detect DDoS processes on a network level,

monitoring packet-based traffic, are being sought for
many years now [3]. Machine learning is widely
exploited by researchers in order to find an efficient
tools, such as Support Vector Machines (SVM),
Neural Networks (NN), various clustering algorithms
and others, through training for self-adaptation to
specific properties and time-related changes of the
overall profile of network traffic [4].

Chen et al. [5] propose detection system for DDoS
attacks aimed at services, offered by cloud-based
servers, in which multiple IoT devices, connected to
smart poles, can play decisive role. It is a multi-layer
discovery system, including off-line learning with
iterative update of pre-trained models, where mutual
incorporation of network and sensor data has
contributed to accuracy levels, ranging from 97.30%
to 99.98%. At the base of the classifier lie decision
trees.

Edge-centric scheme for detecting and mitigating
DDoS attacks, in which an active involvement of IoT
devices occurs, is proposed in [6]. Network traffic
variations influence the internal structure of short-
term memories, as one type of a classifier used, and
convolutional neural network (CNN) – as a second
one involved in the scheme. Identification accuracy
for the first is 98.9% and for the CNN – 99.9%. The
proposed approach has low operational delays when
implemented over edge servers, more powerful than
a personal computer.

Entropy-based detector, relying on Software
Define Networking (SDN), comes as a solution to the
detection of IoT related DDoS attacks [7]. In that
kind of detecting system, the states of SDN,
estimated over a data space representation, provide
overall certainty of spotting malicious activities
between 68% and 99.7%.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.81 Volume 16, 2022

E-ISSN: 1998-4464 653

Relation between application level DDoS attacks
and network flows are studies by Bhardwaj et al. in
[8]. They proposed edge computing techniques,
which connect incoming traffic to a monitoring
service through a fast channel for on-time reaction to
stop damaging influence. Reduction of 82% of the
unwanted traffic is reported. Intelligent functions
through a ShadowNet support that process.

Protocol-agnostic approach proves to be efficient
into limiting the effect of DDoS attacks, as described
by Doshi et al. [9]. Comparison among the k-Nearest
neighbors (k-NN), SVM with linear kernel, decision
trees, random forest and a 4-layer neural network
shows variation in classification accuracy between
0.91 and 0.99. Still, discriminating non-attack
packets from those with malicious content, given
their much more higher appearance rate, is
challenging, especially with a classifier, which has
lower complexity, that is simpler structure.

The benefits of introducing the Software Defined
anything (SDx) paradigm along with the newly
introduced framework by Yin et al. [10], based on
software defined IoT, could strengthen the level of
DDoS mitigation when serving multitude of
heterogeneous devices. Cosine similarity is proved to
be an efficient measure into discriminating incoming
packets as malicious vs. non-malicious ones.
Reduction of the bandwidth, related to wasted traffic
flows as a result from the attack, achieved by the
controller-switch during testing is around 6 times
compared to the reduction of the DPCC algorithm.

Multi-objective optimization is another approach
that proves useful when combined with a deep neural
network, increasing the detection rate of DDoS
attacks [11]. Jumping Gene NSGA-II algorithm
reduces the dimensions of processed data by a CNN,
combined with a Long Short-Term Memory (LSTM).
Classification accuracy of the attacks is reported to
be around 99.03%. Additionally, considerable
reduction of the execution time with regards to the
training process of about 5 times, compared to other
similar methods, supports the applicability of the
proposed approach.

The multi-agent approach in Intrusion Detection
Systems (IDS), spread around monitored network
against DDoS attacks, forms the foundations of
another strategy to cope with this problem. In [12],
Mehmood et al. use that approach together with
Naïve Bayes classifier in order to sense irregular
patterns of the network flows. Detection probability
increases with around 0.2, compared to other generic
IDS implementations, and the detection rate is above
97%.

Most of the presented techniques rely on either
deep neural networks or combined classifiers with

intricate structure, primarily aiming the
discrimination of the ongoing attack, based on
protocol and additional features in some cases, such
as its purpose. In the presented within this paper
study, the aim is to propose a simpler classifier, based
on the well-established feedforward neural network
with backpropagation, which could distinguish only
malicious vs. normal traffic, generated by
compromised IoT devices towards machines,
offering legitimate services.

In Section 2 a description of the used test
database, network traffic features, proposed classifier
and algorithm for its optimization are described.
Experimental results are contained in Section 3,
followed by a discussion in Section 4 and a
conclusion in Section 5.

II. PROPOSED CLASSIFIER

A. Experimental setup for obtaining the test database

The Bot-IoT dataset [13] is collected through a
network setup, shown in Fig. 1. It is a local area
network with internal IP address space. Four of the
machines, namely Bot 1 to Bot 4, are running Kali
Linux with simulated IoT services over the Message
Queuing Telemetry Transport (MQTT) protocol. An
Ubuntu Server offering web-based services, 2
workstations operated by Windows 7 and
Metasploitable, as well as Ubuntu Mobile as a mobile
station are being attacked by all bots. A separate
machine, also working under Ubuntu, plays the role
of a tap, monitoring and recording network traffic.

Fig 1: Network configuration for gathering Bot-IoT dataset

The Server maintains SSH, DNS, HTTP, FTP, e-
mail services. It also simulates IoT related activities,

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.81 Volume 16, 2022

E-ISSN: 1998-4464 654

such as temperature, humidity and pressure sensing,
passing information to virtual brokers by the MQTT
with a repeated communication pattern every 5
seconds. Another 4 IoT services that are employed
during testing are smart fridge, motionlights,
automated garage door and autonomous thermostat
[13]. All the traffic from these services corresponds
to normal activities without any attack present.

The communication protocols and the proportion
of initiated instances among them used by services
during normal operation are TCP (18.3%), UDP
(75.7%), ARP (4.9%), ICMP (0.09%), IPv6-ICMP
(0.9%), IGMP (0.02%) and RARP (0.01%).

Simultaneously to normal traffic generation,
several attack types are carried out by Bot 1 to 4. The
first one is OS fingerprinting and the second one –
service scanning by probing the whole range of ports
from 0 to 65 535. Complete TCP connections and
SYN requests are established while scanning. The
third and the fourth type of attacks are Denial of
Service (DoS) and Distributed Denial of Service
(DDoS), depending on whether one or more of the
bots are attacking the server. TCP (TCP SYN), UDP
and HTTP (by POST method) floods occur in both
DoS and DDoS scenarios. Information theft,
comprising of data theft and keylogging as fifth and
sixth major types of attack, is the last of malicious
activities, realized during dataset gathering. Data
theft is accomplished from Workstation 2 (Fig. 1) by
the Metasploit platform to the Windows 7
workstation through SMB vulnerability and by brute
force over the access credentials for the Ubuntu
Server [13], further exfiltrating large volumes of
data. For keylogging the same weaknesses along with
an open SSH service with weak credentials in the
Server allow access to the users’ input.

B. Features description and statistics

Ten features are selected as most promising for attack
classification in the Bot-IoT dataset by its authors
[13]. The first one is seq – sequence number of record
from the registering software (Argus), stddev –
standard deviation of all inscriptions after
compacting, N_IN_Conn_P_SrcIP – number of
incoming connections associated with a source IP
address, min – minimal period of time for compacted
records, state_number – number, which describe the
state of a feature, mean – average period of time for
compacted records, N_IN_Conn_P_DstIP - number
of incoming connections associated with a
destination IP address, drate – packets rate from
destination to source, srate – packets rate from source
to destination, max – maximal period of time for a
compacted records. Against each record there is a

label, comprising of 2 fields (general type and sub-
type) for the type of attack and in a separate field
whether it is an attack or normal traffic. For the
purposes of this study, only the second label which
could be either 0 (normal traffic) or 1 (attack), putting
it as a categorical variable and being the target value
for the propose classifier.
The dataset is divided in 2 parts (2 separate files in
comma-separated values format (csv)) – training set
which has 2 943 817 samples, of which 370 non-
attacks, and testing set with 733 705 samples, of
which 107 non-attacks. In order to prioritize the
features based on their significance for the
classification, the following parameters are found
over the training set:

 Information gain, [14]:

 𝐼𝐺(𝑇𝑆, 𝑓) = 𝐻(𝑇𝑆) −
∑ 𝑃𝑓(𝑣)𝐻(𝑆𝑓(𝑣))𝑣𝜖𝑣𝑎𝑙𝑠(𝑓) , (1)

where IG is the information gain, TS – the set of
training samples, f – particular feature, H – entropy,
v – given value of a feature, Sf(v) – sub-set of training
samples for which selected feature f has a value of v,
Pf(v) – categorical probability distribution on the
values v of a given feature f.

 Information gain ratio, [14]:

 𝐼𝐺𝑅(𝑇𝑆, 𝑓) = 𝐼𝐺(𝑇𝑆, 𝑓)/𝐼𝑉(𝑇𝑆, 𝑓), (2)

where IGR is the information gain ratio and IV is the
intrinsic value, defined as:

𝐼𝑉(𝑇𝑆, 𝑓) = − ∑
|{𝑡 ∈ 𝑇𝑆|𝑣𝑎𝑙(𝑡, 𝑓) = 𝑣}|

|𝑇𝑆|
𝑣∈𝑣𝑎𝑙(𝑓)

.

 . log
2

(
|{𝑡∈𝑇𝑆|𝑣𝑎𝑙(𝑡,𝑓)=𝑣}|

|𝑇𝑆|
), (3)

where t is specific example for attribute f.

 Gini coefficient, [14]:

 𝐺 =
2 ∑ 𝑖𝑡𝑖

𝑛
𝑖=1

𝑛 ∑ 𝑡𝑖
𝑛
𝑖=1

−
𝑛+1

𝑛
, (4)

where G is the Gini coefficient over a population
from any real distribution, consisting of values ti
ordered in ascending order for i = 1÷n.

The resulting values for IG, IV and G for the
complete training set are shown in Fig. 2. The most
notable distinction of feature concerns seq and
N_IN_conn_P_SrcIP, which are 2 orders of a
magnitude lower than the rest 8 features. That is the
main motivating factor in our experimentation to try

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.81 Volume 16, 2022

E-ISSN: 1998-4464 655

discriminating normal vs. attack traffic, not only
using all 10 features, but also just 8 of them.

Fig 2: Features ranking

The minimal, maximal, and center values for all

features is given in Table 1, along with their
dispersion.

Table 1: Features’ values distributions

Feature Center
Disper-

sion Min. Max.
max 3.02 0.61 0 5
srate 3.13 250.79 0 1.106
drate 0.43 130.68 0 5.9.104

N_IN_Conn
_P_DstIP 92.46 0.20 1 102

mean 2.23 0.68 0 4.98
state_num-

ber 3.13 0.38 1 11
min 1.02 1.46 0 4.98

N_IN_Conn
_P_SrcIP 82.55 0.30 1 100

stddev 0.89 0.92 0 2.50
seq 1.2.105 0.62 1 2.6.105

During training and testing with the specifically

designed classifiers all features are being normalized
by the min-max approach [15]:

 𝑝𝑖𝑛 = (𝑝𝑖 − 𝑝𝑚𝑖𝑛)

(𝛽−𝛼)

(𝑝𝑚𝑎𝑥−𝑝𝑚𝑖𝑛)
+ 𝛼, (5)

where pin is the normalized value for particular input
value pi of a feature, given pi ϵ [pmin, pmax] and pin ϵ
[α, β]. In this study α = 0 and β = 1.

The 10-bin histogram for each feature is presented
in Fig. 3. It could be observed a particular similarity
between the distributions of the
N_IN_Conn_P_SrcIP and N_IN_Conn_P_DstIP

features and as it is demonstrated below these
features are also highly correlated.

a b

 c d

e f

 g h

 i j

Fig 3: Features’ histograms: a – max, b – srate, c- drate, d –
N_IN_Conn_P_DstIP, e – mean, f – state_number, g – min, h –

N_IN_Conn_P_SrcIP, i – stddev, j – seq

The correlation on a pair-wise basis for the first
20 most strongly connected features, using Pearson
and Spearman coefficients, is shown in Fig.4. The
Pearson coefficient is calculated according to [15]:

 𝑟𝑓𝑔 =
∑ (𝑓𝑖−�̅�)𝑛

𝑖=1 (𝑔𝑖−�̅�)

√∑ (𝑓𝑖−�̅�)
2𝑛

𝑖=1
√∑ (𝑔𝑖−�̅�)

2𝑛
𝑖=1

, (6)

where f and g are two distinctive features from the
training set with mean values 𝑓 ̅and �̅�, respectively,
and n is the size of the training set. The Spearman
coefficient rs is found in a similar way to (6) but
taking in to account the rank variables [15]:

 𝑟𝑠 =
𝑐𝑜𝑣(𝑟𝑘𝑓,𝑟𝑘𝑔)

𝜎𝑟𝑘𝑓
𝜎𝑟𝑘𝑔

, (7)

where rkf and rkg are the ranks of the features’ raw
values f and g, and σ denotes standard deviation of
the respective parameter.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.81 Volume 16, 2022

E-ISSN: 1998-4464 656

Fig 4: Pair-wise features correlation

The successive number of record seq is met 4

times in the first 20 correlation dependencies, which
is also true for the N_IN_Conn_P_SrcIP. Both
features form strong connections with the

N_IN_Conn_P_DstIP feature. This is another reason
to try testing only 8 features with the proposed
classifier – without seq and N_IN_Conn_P_SrcIP -
as a second comparing experiment to that of using all
10 features.

C. Proposed neural classifier general structure

One of the main goals of the presented study is to
propose a simpler structure of a classifier to others,
such as the Recurrent Neural Network, described in
[13] for the same task of discriminating attacks from
normal activities by traffic monitoring. This allows
both the time execution during training and
classification and the memory consumption to be
lower. The general structure of the classifier,
developed here, is presented in Fig. 5. It is
feedforward neural network with backpropagation
algorithm for training [16].

Fig 5: Proposed neural network for classification

All the features, employed for classification, form

a vector 𝑓 = {𝑓1, 𝑓2, … , 𝑓𝑁1
}, where N1 = 10 for the

complete set, described in Section 2.2. The weights
of a neuron from layer lk, where k = 1÷3, that is an
input layer, a hidden one and an output layer, are
𝑤𝑖

𝑘⃗⃗ ⃗⃗ ⃗⃗ = {𝑤1𝑖
𝑘 , … , 𝑤𝑁𝑘𝑖

𝑘 }, leading to outputs of all
neurons from the same layer lk, ordered as a vector in
the form 𝑜𝑘⃗⃗ ⃗⃗⃗ = {𝑜1

𝑘 , … , 𝑜𝑁𝑘

𝑘 }. One and the same type
of activation function gk, k = 1÷3, is used among all
neurons from a particular layer, although activation
functions from different layers are different,
described in Section 3 within the experimental
results. Before training the network is fully connected
and it is initialized with the first set of features,
passed from the training set 𝑓1

⃗⃗⃗⃗ . The output of any
neuron can be expressed in the following generalized
form [16]:

 𝑜𝑖

𝑘 = 𝑔𝑘 (ℎ𝑖
𝑘

) = 𝑔𝑘 (𝑤𝑖
𝑘⃗⃗ ⃗⃗ ⃗⃗ . о𝑘−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑏𝑖

𝑘
) = 𝑏𝑖

𝑘 +

∑ 𝑤𝑗𝑖
𝑘𝑁𝑘

𝑗=1 𝑜𝑗
𝑘−1, (8)

where hi

k is the product of the input signals for a
neuron i from layer k with its associated weights, bi

k
– the bias of the same neuron.

The training process involves the set of pairs F =
{(𝑓1

⃗⃗⃗⃗ , 𝑡1), … , (𝑓𝑀
⃗⃗ ⃗⃗⃗, 𝑡𝑀)}, where for each feature vector

𝑓𝑖
⃗⃗⃗ for i = 1÷M, there is expected value, or target, as
an output ti. Cost function is the Mean Squared Error
(MSE), [16]:

 𝑀𝑆𝐸 = 𝐸(𝐹) =

1

𝑀
∑ (𝑜𝑖 − 𝑡𝑖)

2𝑀
𝑖=1 , (9)

where E is the expectation operator, applied over all
realizations during training, which explicit aim is
minimizing MSE. It is achieved by iterative changes
of both weights and biases, according to [16]:

 ∆𝑤𝑖𝑗

𝑘 = −𝛼
𝜕𝐸(𝐹)

𝜕𝑤𝑖𝑗
𝑘 , (10)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.81 Volume 16, 2022

E-ISSN: 1998-4464 657

 ∆𝑏𝑖
𝑘 = −𝛼

𝜕𝐸(𝐹)

𝜕𝑏𝑖
𝑘 , (11)

where α is the learning rate.

D. Classifier optimization algorithm
There is no general approach that could indicate how
to select the number of neurons in the hidden layer N1
of the network, described in Section 2.3. That’s why
the following general scheme (Fig. 6) for their
selection is applied during experimentation.

Fig 6: Neural network optimization

Five realizations of the network are tried with

hidden neurons varying from 20 to 100 with a step of
20. Given target values for minimal MSE and
maximum number of epochs, in this case 1000,
training continues until one of the criteria is met.
From all 5 tested networks accuracy is compared,
based on confusion matrices over the results of
classification and then the optimal N1 is selected. This
experiment is done for 4 different activation
functions for the hidden neurons – Identity, Logistic,
Tanh, and ReLU. Optimization is implemented with
the full set of 10 features for not losing
generalization. Also, 2 algorithms for
backpropagation are tested – the Adam optimization
and the Scaled Gradient Descent (SGD).

In order to evaluate the performance of the trained
classifiers, the following measures are used [17]:

 True Positives – TP – the number of samples,
that are correctly classified as either attack or
non-attack to the corresponding class during
testing;

 True Negatives – TN – the number of
samples, that are correctly not associated
with particular class;

 False Positives – FP – the number of
samples, that are incorrectly assigned to
given class but do not belong to it;

 False Negatives – FN – the number of
samples, that actually belong to given class,
but are wrongly associated to the other class;

 Precision = TP / (TP + FP);
 Recall = TP / (TP + FN);
 Specificity = TN / (TN + FP);
 F1 = TP / (TP + (FP + FN)/2);
 Log-loss = -[t.ln(p) + (1-t).ln(1-p)], where t

is the target value of a sample and p is the
probability, found by the classifier that the
very same sample belongs to the class,
associated with the target. This parameter is
found as average value over all samples;

 Classification accuracy – CA = (TP + TN) /
(TP + TN + FP + FN);

 Area Under Curve – AUC – the probability
that the classifier ranks arbitrary selected
positive sample higher than an arbitrary
selected negative sample.

III. EXPERIMENTAL RESULTS
The hardware platform, used for testing, consists of
Intel Xeon E5-1620 CPU with 4 cores, operating in
hyper-threading mode at 3.50 GHz. The processor
holds L1 cache of 256 kB, L2 – 1 MB and L3 – 10
MB. The size of RAM memory is 64 GB, and the size
of the HDD is 2 TB. All components are under the
control of MS Windows 10 Pro 20H2. Orange v. 3.28
is the simulation environment, in which all neural
network models are trained and tested.

The results from finding the optimal network
configuration are given in Fig. 7.

 a

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.81 Volume 16, 2022

E-ISSN: 1998-4464 658

 b

 c

 d

 e

 f

 g

 h
Fig 7: Optimizing the structure of the neural network by

training algorithm and activation function

The results in Fig. 7 show confusion matrices only
for the case of 80 neurons. All values are obtained
after validation of the full training set. Similar are the
result as ratios between actual and predicted numbers
of attacks and normal network communication.

Execution times for both solvers and all activation
functions are given in Table 2.

Table 2: Execution times achieved by SGD and Adam

optimization using 80 neurons in the hidden layer

Algorithm Activation
Function

Training
Time, sec

Testing Time, sec

Train set Test set

SGD

Identity 138.79 2.59 0.95
Logistic 159.50 7.86 1.97

Tanh 243.18 7.82 2.19
ReLU 228.59 5.93 1.59

Adam

Identity 145.88 3.01 0.95
Logistic 179.65 8.05 9.17

Tanh 212.47 11.53 3.36
ReLU 189.19 4.61 1.89

Adam optimization turns out to be much more

efficient than SGD in this binary classification
problem (Fig. 7). The best accuracy is found for the
Tanh activation function which is further tested
(Tables 3 and 4).

Table 3: Classifier performance at 10 features, validating the

training set
Cl. N1 AUC CA F1 Pre-

cision Recall Log-
loss

Specifi-
city

0

20 0.9999 0.9999 0.8198 0.7929 0.8486 0.0001 0.9999
40 0.9999 0.9999 0.7789 0.8498 0.7189 0.0001 0.9999
60 0.9999 0.9999 0.8403 0.7559 0.9459 0.0001 0.9999
80 0.9999 0.9999 0.7849 0.7807 0.7892 0.0001 0.9999
100 0.9997 0.9999 0.8068 0.8503 0.7676 0.0001 0.9999

1

20 0.9999 0.9999 0.9999 0.9999 0.9999 0.0001 0.8486
40 0.9999 0.9999 0.9999 0.9999 0.9999 0.0001 0.7189
60 0.9999 0.9999 0.9999 0.9999 0.9999 0.0001 0.9459
80 0.9999 0.9999 0.9999 0.9999 0.9999 0.0001 0.7892
100 0.9997 0.9999 0.9999 0.9999 0.9999 0.0001 0.7676

Table 4: Classifier performance at 10 features, using the test set

Cl. N1 AUC CA F1 Pre-
cision Recall Log-

loss
Specifi-

city

0

20 0.9999 0.9999 0.8148 0.8073 0.8224 0.0001 0.9999
40 0.9999 0.9999 0.7539 0.8571 0.6729 0.0001 0.9999
60 0.9999 0.9999 0.8448 0.7840 0.9159 0.0001 0.9999
80 0.9999 0.9999 0.7714 0.7864 0.7570 0.0001 0.9999
100 0.9998 0.9999 0.7960 0.8511 0.7477 0.0002 0.9999

1

20 0.9999 0.9999 0.9999 0.9999 0.9999 0.0001 0.8224
40 0.9999 0.9999 0.9999 0.9999 0.9999 0.0001 0.6729
60 0.9999 0.9999 0.9999 0.9999 0.9999 0.0001 0.9159
80 0.9999 0.9999 0.9999 0.9999 0.9999 0.0001 0.7570
100 0.9998 0.9999 0.9999 0.9999 0.9999 0.0001 0.7477

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.81 Volume 16, 2022

E-ISSN: 1998-4464 659

Results from training and testing the neural
network with the Adam algorithm and Tanh when
using 10 features and varying the number of neurons
are given on a class (Cl.) basis.

The evaluation parameters from validation of the
complete training set with the classifier when using 8
features, that is without seq and
N_IN_Conn_P_SrcIP, are gathered in Table 5.

Table 5: Classifier performance at 8 features, using the training

set
Cl. N1 AUC CA F1 Pre-

cision Recall Log-
loss

Specifi-
city

0

20 0.9997 0.9999 0.6924 0.7356 0.6541 0.0002 0.9999
40 0.9997 0.9999 0.6396 0.8008 0.5324 0.0002 0.9999
60 0.9997 0.9998 0.4396 0.6818 0.3243 0.0002 0.9999
80 0.9998 0.9999 0.7411 0.7212 0.7622 0.0002 0.9999
100 0.9998 0.9999 0.7085 0.7689 0.6567 0.0002 0.9999

1

20 0.9997 0.9999 0.9999 0.9999 0.9999 0.0002 0.6541
40 0.9998 0.9999 0.9999 0.9999 0.9999 0.0002 0.5324
60 0.9997 0.9998 0.9999 0.9999 0.9999 0.0002 0.3243
80 0.9998 0.9999 0.9999 0.9999 0.9999 0.0002 0.7622
100 0.9998 0.9999 0.9999 0.9999 0.9999 0.0002 0.6567

Testing the performance of the classifier over the

whole test set with the same 8 features leads to the
parameters from Table 6.

Table 6: Classifier performance at 8 features, using the test set
Cl. N1 AUC CA F1 Pre-

cision Recall Log-
loss

Specifi-
city

0

20 0.9999 0.9999 0.6767 0.7362 0.6261 0.0002 0.9999
40 0.9999 0.9999 0.6321 0.8208 0.5140 0.0002 0.9999
60 0.9999 0.9998 0.4968 0.7407 0.3738 0.0002 0.9999
80 0.9999 0.9999 0.7441 0.7407 0.7476 0.0002 0.9999
100 0.9999 0.9999 0.7357 0.8255 0.6635 0.0002 0.9999

1

20 0.9999 0.9999 0.9999 0.9999 0.9999 0.0002 0.6261
40 0.9999 0.9999 0.9999 0.9999 0.9999 0.0002 0.5140
60 0.9999 0.9998 0.9999 0.9999 0.9999 0.0002 0.3738
80 0.9999 0.9999 0.9999 0.9999 0.9999 0.0002 0.7476
100 0.9999 0.9999 0.9999 0.9999 0.9999 0.0002 0.6635

Confusion matrices when processing the full test

set with the optimal classifier, which turns to have
N1opt = 60 neurons for 8 features and N1opt = 80
neurons for 10 features, are given in Fig. 8. These
optimal configurations are obtained based on the
minimal number of wrongly marked attacks as non-
attacks, while the number of missed attacks is
negligible in virtually all cases (Fig. 7 and 8, and
Tables 4 and 6). Both classifiers use the Adam
optimization with Tanh activation function for
neurons in the hidden layer. They are trained either to
reaching MSEmin, according to the algorithm from
Fig. 6, or T = 1000 epochs. Learning rate in all cases
is α = 0.0001.

 a

 b
Fig 8: Confusion matrices for the optimal classifier at 10 (a) and

8 (b) features

The time consumption during training with all the
samples from the training set with 8 features and the
time needed for classification with both the training
and testing sets are given in Table 7.

Table 7. Execution times, using 8 features, in sec

N1 Training Testing
Train set Test set

20 110.62 3.93 0.99
40 152.39 6.71 2.04
60 194.45 8.71 2.20
80 229.59 10.84 2.73

100 238.87 13.36 3.22

The respective execution times when using 10
features are presented in Table 8.

Table 8. Execution times, using 10 features, in sec

N1 Training Testing
Train set Test set

20 121.24 4.23 1.06
40 131.88 6.96 1.83
60 200.79 9.51 2.45
80 212.47 11.53 3.36

100 243.13 14.15 3.42

IV. DISCUSSION
SGD algorithm leads to low classification accuracy
of the non-attack samples – 1.62%, employing the
Identity and ReLU activation functions for the hidden
neurons and 0% - for the Logistic and Tanh (Fig. 7.e-
h). In the same time the Adam algorithm allows to
have 2.43% for the Identity activation function,
15.68% - for the Logistic, 78.92% - for the Tanh, and
64.86% - for the ReLU correctly discriminated non-
attacks (Fig. 7.a-d). The level of correct classification
of all kinds of attacks is high for all 8 initial tests,
involving 80 neurons, for both SGD and Adam
algorithms – 2.79.10-3% error for the worst case of
Adam ReLU (Fig. 7.c). The execution times,
registered during the training process, are smaller
when the Adam optimization uses Tanh and ReLU
activation functions, compared to SGD with the same
functions – by a factor of 0.85 on average (Table 2).

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.81 Volume 16, 2022

E-ISSN: 1998-4464 660

SGD with a combination of Identity or Logistic
activation function is faster than the Adam algorithm
during training – around 1.09 times. The test phase
takes almost the same time between each pair of
classifiers, using one and the same activation
function, no matter of the training algorithm used.
The exception of 9.17 sec for the Logistic case is
considered to be an outlier, coming as an exception
from experimentation. Among all 4 activation
functions the most time for testing occurs for the
Tanh and the least – for the Identity function with a
difference of around 2.5 times. Given the
classification accuracy, the combination of Adam
algorithm and Tanh activation function are selected
for all further tests.

Varying the number of hidden neurons from 20 to
100 when using all 10 features leads to high average
classification accuracy of 0.9999 for both attack and
non-attack samples (Table 3 and 4). However, the F1
score reveals a particular drop for the non-attack class
(Cl. = 0) with least value of 0.7539 for 40 neurons
trying the test set (Table 4). The same measure is
constantly bounding to 0.9999 in all cases for Cl. = 1,
which is also true for the Precision and Recall
measures, while Logloss is 0.0001. In the same time
Precision and Recall drop to 0.7840 and 0.6729 for
60 and 40 hidden neurons, respectively for Cl. = 0.
Specificity stays constantly high, equal to 0.9999, for
the non-attacks but goes down to 0.6729 for 40
neurons for the attack samples. The optimal
configuration of a binary classifier, working on 10
features, includes 60 hidden neurons, being trained
with the Adam optimization algorithm and using
Tanh activation function in the hidden layer. Only
8.4% from all non-attacks are misclassified in this
case along with 3.68.10-3% missclassifications for
the attack samples (Fig. 8.a).

Reducing the feature set to 8 parameters preserves
the classification accuracy to 0.9999 in most of the
cases (Tables 5 and 6) with the exception of 60
hidden neurons, where it is slightly lower – 0.9998.
The area under the curve (AUC) is also high –
dominantly 0.9999, but the F1 measure drops from
around 0.2 to 0.4 with the change of the number of
hidden neurons. Its lowest point is for 60 neurons –
0.4396 for Cl. = 0 and for Cl. = 1 – it is always
0.9999. Similar to the case of 10 features,
classification of attacks is very accurate, which is
also seen from the Precision and Recall, being equal
to 0.9999. The Logloss is 0.0002 for both attack and
non-attack samples, but only attack samples yields
Specificity of 0.9999. Cl. = 1 testing reveals
Specificity of 0.3243 for 60 hidden neurons when
validating the classifier over the full train set and
0.3738 – over the test set as the minimum for this

parameter. The best result is obtained for 80 neurons
with 74.77% correctly classified non-attacks and
3.82.10-3% misclassified attacks (Fig. 8.b). Again,
Adam optimization when using Tanh activation
function for the hidden layer gives these optimal
results. Obviously, this classifier with reduced
feature set is more inaccurate than the 10-feature
implementation with 16.83% less with regard to non-
attacks, raising more false alarms. Given the
execution times (Tables 7 and 8) at N1 = 60 for 10
features and N1 = 80 for 8 features, which are very
close with an absolute difference of 0.28 sec
(3.82.10-7 sec/sample), making the first one faster, it
is natural to select it as the optimal version of a
classifier and further use it in practical
implementations.

Finally, a comparison is made of both the 8- and
10-feature classifiers, proposed in this study, with a
Recurring Neural Network (RNN), described in [1],
operating over the same training and testing set. As it
can be seen from Table 9, the Recall, F1 measure and
CA are higher for the two implementations of the
feed forward neural network. Precision is lower by
0.0001 for the 8-feature variant, while the 10-feature
produce the same result as the RNN. Given the more
complex structure of the RNN, with 20, 60, 80 and
90 neurons in 4 hidden layers, and the overall
achieved accuracy, the proposed optimal classifier
from the current research would be preferable to use
for detecting DoS, DDoS, theft and reconnaissance
type of attacks.

Table 9. Classification efficiency comparison on average
parameters for both classes

Parameter
RNN - 10
features,

[1]

Proposed -
10 features

Proposed -
8 features

Precision 0.9999 0.9999 0.9998
Recall 0.9975 0.9999 0.9998

F1 0.7338 0.9999 0.9998
CA 0.9974 0.9999 0.9998

V. CONCLUSION

In this paper a new model of feedforward neural
network with one hidden layer is proposed, capable
of detecting DoS, DDoS, theft and reconnaissance
activities over IP packet switching networks, aimed
at particular victim machines. The optimal structure
of the classifier consists of 10 inputs, 60 hidden
neurons using hyperbolic tangent activation function
and 1 single output for binary discrimination to attack
vs. non-attack activity. Most accurate result from
training is achieved by the Adam optimization
procedure. Analogous neural network model,
incorporating only 8 from the 10 features with 80

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.81 Volume 16, 2022

E-ISSN: 1998-4464 661

hidden neurons, behaves also accurately enough and
together with the 10-feature implementation achieve
better accuracy than a 4 hidden layers Recurring
Neural Network over the same test base. The
proposed classifier is considered promising for
practical implementation as a component of an online
monitoring system, mainly against DDoS attacks in
packet switched networks.

REFERENCES

[1] Sharma, K., Mukhopadhyay, A., Cyber Risk
Assessment and Mitigation Using Logit and
Probit Models for DDoS attacks, Americas

Conference on Information systems (AMCIS

2020), August 2020, pp. 1-9.
[2] Vishwakarma, R., Jain, A. K., A Survey of

DDoS Attacking Techniques and Defence
Mechanisms in the IoT Network.
Telecommunication Systems, Vol. 73, No. 1,
2020, pp. 3-25.

[3] Sallam, A. A., Kabir, M. N., Alginahi, Y. M.,
Jamal, A., Esmeel, T. K., IDS for Improving
DDoS Attack Recognition Based on Attack
Profiles and Network Traffic Features. In 2020

16th IEEE International Colloquium on Signal

Processing & Its Applications (CSPA), IEEE,
February 2020, pp. 255-260.

[4] Tahsien, S. M., Karimipour, H., Spachos, P.,
Machine Learning based Solutions for Security
of Internet of Things (IoT): A Survey. Journal

of Network and Computer Applications, Vol.
161, 2020, art. No. 102630.

[5] Chen, Y. W., Sheu, J. P., Kuo, Y. C., Van
Cuong, N., Design and Implementation of IoT
DDoS Attacks Detection System based on
Machine Learning. In 2020 European

Conference on Networks and Communications

(EuCNC), IEEE, June 2020, pp. 122-127.
[6] Jia, Y., Zhong, F., Alrawais, A., Gong, B.,

Cheng, X., Flowguard: An Intelligent Edge
Defense Mechanism against IoT DDoS Attacks,
IEEE Internet of Things Journal, Vol. 7, No. 10,
pp. 9552-9562.

[7] Galeano-Brajones, J., Carmona-Murillo, J.,
Valenzuela-Valdés, J. F., Luna-Valero, F.,
Detection and Mitigation of DoS and DDoS
Attacks in IoT-based Stateful SDN: An
Experimental Approach, Sensors, Vol. 20, No.
3, 2020, Art. No. 816.

[8] Bhardwaj, K., Miranda, J. C., Gavrilovska, A.,
Towards IoT-DDoS Prevention using Edge
Computing, In {USENIX} Workshop on Hot

Topics in Edge Computing (HotEdge 18),
Boston, MA, USA, July 2018, pp. 1-7.

[9] Doshi, R., Apthorpe, N., Feamster, N., Machine
Learning DDoS Detection for Consumer
Internet of Things Devices, In 2018 IEEE

Security and Privacy Workshops (SPW), IEEE,
May 2018, pp. 29-35.

[10] Yin, D., Zhang, L., Yang, K., A DDoS Attack
Detection and Mitigation with Software-
Defined Internet of Things Framework, IEEE

Access, Vol. 6, 2018, pp. 24694-24705.
[11] Roopak, M., Tian, G. Y., Chambers, J., An

Intrusion Detection System against DDoS
Attacks in IoT Networks, In 2020 10th Annual

Computing and Communication Workshop and

Conference (CCWC), IEEE, January 2020, pp.
0562-0567.

[12] Mehmood, A., Mukherjee, M., Ahmed, S. H.,
Song, H., Malik, K. M., NBC-MAIDS: Naïve
Bayesian Classification Technique in Multi-
Agent System-Enriched IDS for Securing IoT
against DDoS Attacks, The Journal of

Supercomputing, Vol. 74, No. 10, 2018, pp.
5156-5170.

[13] Koroniotis, N., Moustafa, N., Sitnikova, E.,
Turnbull, B., Towards the Development of
Realistic Botnet Dataset in the Internet of
Things for Network Forensic Analytics: Bot-IoT
dataset. Future Generation Computer Systems,
Vol. 100, November 2019, pp. 779-796.

[14] Rhys, H., Machine Learning with R, Tidyverse,

and MLR, Manning Publications, 2020.
[15] Abu-Bader, S. H., Using statistical Methods in

Social Science Research: With a Complete SPSS

Guide, Oxford University Press, 2021.
[16] Elgendy, M., Deep Learning for Vision Systems,

Manning Publications, 2020.
[17] Kolo, B., Binary and Multiclass Classification,

Weatherford Press, 2011.

Creative Commons Attribution

License 4.0 (Attribution 4.0

International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2022.16.81 Volume 16, 2022

E-ISSN: 1998-4464 662

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

