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Abstract: - In this paper an optimized feedforward 

neural network model is proposed for detection of 

IoT based DDoS attacks by network traffic 

analysis aimed towards a specific target which 

could be constantly monitored by a tap. The 

proposed model is applicable for DoS and DDoS 

attacks which consist of TCP, UDP and HTTP 

flood and also against keylogging, data 

exfiltration, OS fingerprint and service scan 

activities. It simply differentiates such kind of 

network traffic from normal network flows. The 

neural network uses Adam optimization as a 

solver and the hyperbolic tangent activation 

function in all neurons from a single hidden layer. 

The number of hidden neurons could be varied, 

depending on targeted accuracy and processing 

speed. Testing over the Bot IoT dataset reveals 

that developed models are applicable using 8 or 10 

features and achieved discrimination error of  

4.91.10-3%.  

 

Key-Words: - IoT, DDoS, keylogging, data 

exfiltration, botnet, network traffic analysis, 
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I. INTRODUCTION 
Distributed Denial of Service (DDoS) attacks cause 
significant financial losses in various industries. A 
recent research [1] exposes that a single attack of this 
type could cost between USD 120 000 and USD 2 
million to targeted businesses with an annual growth 
of the size of these activities close to 40%. IoT 
devices are more often incorporated in such attacks, 
after being intruded and remotely controlled, as 
intense generators of requests to online services, 
rendering them unusable [2]. Efficient measures to 
detect DDoS processes on a network level, 

monitoring packet-based traffic, are being sought for 
many years now [3]. Machine learning is widely 
exploited by researchers in order to find an efficient 
tools, such as Support Vector Machines (SVM), 
Neural Networks (NN), various clustering algorithms 
and others, through training for self-adaptation to 
specific properties and time-related changes of the 
overall profile of network traffic [4].  

Chen et al. [5] propose detection system for DDoS 
attacks aimed at services, offered by cloud-based 
servers, in which multiple IoT devices, connected to 
smart poles, can play decisive role. It is a multi-layer 
discovery system, including off-line learning with 
iterative update of pre-trained models, where mutual 
incorporation of network and sensor data has 
contributed to accuracy levels, ranging from 97.30% 
to 99.98%. At the base of the classifier lie decision 
trees. 

Edge-centric scheme for detecting and mitigating 
DDoS attacks, in which an active involvement of IoT 
devices occurs, is proposed in [6]. Network traffic 
variations influence the internal structure of short-
term memories, as one type of a classifier used, and 
convolutional neural network (CNN) – as a second 
one involved in the scheme. Identification accuracy 
for the first is 98.9% and for the CNN – 99.9%. The 
proposed approach has low operational delays when 
implemented over edge servers, more powerful than 
a personal computer. 

Entropy-based detector, relying on Software 
Define Networking (SDN), comes as a solution to the 
detection of IoT related DDoS attacks [7]. In that 
kind of detecting system, the states of SDN, 
estimated over a data space representation, provide 
overall certainty of spotting malicious activities 
between 68% and 99.7%. 
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Relation between application level DDoS attacks 
and network flows are studies by Bhardwaj et al. in 
[8]. They proposed edge computing techniques, 
which connect incoming traffic to a monitoring 
service through a fast channel for on-time reaction to 
stop damaging influence. Reduction of 82% of the 
unwanted traffic is reported. Intelligent functions 
through a ShadowNet support that process. 

Protocol-agnostic approach proves to be efficient 
into limiting the effect of DDoS attacks, as described 
by Doshi et al. [9]. Comparison among the k-Nearest 
neighbors (k-NN), SVM with linear kernel, decision 
trees, random forest and a 4-layer neural network 
shows variation in classification accuracy between 
0.91 and 0.99. Still, discriminating non-attack 
packets from those with malicious content, given 
their much more higher appearance rate, is 
challenging, especially with a classifier, which has 
lower complexity, that is simpler structure. 

The benefits of introducing the Software Defined 
anything (SDx) paradigm along with the newly 
introduced framework by Yin et al. [10], based on 
software defined IoT, could strengthen the level of 
DDoS mitigation when serving multitude of 
heterogeneous devices. Cosine similarity is proved to 
be an efficient measure into discriminating incoming 
packets as malicious vs. non-malicious ones. 
Reduction of the bandwidth, related to wasted traffic 
flows as a result from the attack, achieved by the 
controller-switch during testing is around 6 times 
compared to the reduction of the DPCC algorithm. 

Multi-objective optimization is another approach 
that proves useful when combined with a deep neural 
network, increasing the detection rate of DDoS 
attacks [11]. Jumping Gene NSGA-II algorithm 
reduces the dimensions of processed data by a CNN, 
combined with a Long Short-Term Memory (LSTM). 
Classification accuracy of the attacks is reported to 
be around 99.03%. Additionally, considerable 
reduction of the execution time with regards to the 
training process of about 5 times, compared to other 
similar methods, supports the applicability of the 
proposed approach. 

The multi-agent approach in Intrusion Detection 
Systems (IDS), spread around monitored network 
against DDoS attacks, forms the foundations of 
another strategy to cope with this problem. In [12], 
Mehmood et al. use that approach together with 
Naïve Bayes classifier in order to sense irregular 
patterns of the network flows. Detection probability 
increases with around 0.2, compared to other generic 
IDS implementations, and the detection rate is above 
97%. 

Most of the presented techniques rely on either 
deep neural networks or combined classifiers with 

intricate structure, primarily aiming the 
discrimination of the ongoing attack, based on 
protocol and additional features in some cases, such 
as its purpose. In the presented within this paper 
study, the aim is to propose a simpler classifier, based 
on the well-established feedforward neural network 
with backpropagation, which could distinguish only 
malicious vs. normal traffic, generated by 
compromised IoT devices towards machines, 
offering legitimate services. 

In Section 2 a description of the used test 
database, network traffic features, proposed classifier 
and algorithm for its optimization are described. 
Experimental results are contained in Section 3, 
followed by a discussion in Section 4 and a 
conclusion in Section 5. 

 
 

II. PROPOSED CLASSIFIER 
 
A. Experimental setup for obtaining the test database 

The Bot-IoT dataset [13] is collected through a 
network setup, shown in Fig. 1. It is a local area 
network with internal IP address space. Four of the 
machines, namely Bot 1 to Bot 4, are running Kali 
Linux with simulated IoT services over the Message 
Queuing Telemetry Transport (MQTT) protocol. An 
Ubuntu Server offering web-based services, 2 
workstations operated by Windows 7 and 
Metasploitable, as well as Ubuntu Mobile as a mobile 
station are being attacked by all bots. A separate 
machine, also working under Ubuntu, plays the role 
of a tap, monitoring and recording network traffic.  
 

 
 

Fig 1: Network configuration for gathering Bot-IoT dataset 
 

The Server maintains SSH, DNS, HTTP, FTP, e-
mail services. It also simulates IoT related activities, 
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such as temperature, humidity and pressure sensing, 
passing information to virtual brokers by the MQTT 
with a repeated communication pattern every 5 
seconds. Another 4 IoT services that are employed 
during testing are smart fridge, motionlights, 
automated garage door and autonomous thermostat 
[13]. All the traffic from these services corresponds 
to normal activities without any attack present. 

The communication protocols and the proportion 
of initiated instances among them used by services 
during normal operation are TCP (18.3%), UDP 
(75.7%), ARP (4.9%), ICMP (0.09%), IPv6-ICMP 
(0.9%), IGMP (0.02%) and RARP (0.01%).  

Simultaneously to normal traffic generation, 
several attack types are carried out by Bot 1 to 4. The 
first one is OS fingerprinting and the second one – 
service scanning by probing the whole range of ports 
from 0 to 65 535. Complete TCP connections and 
SYN requests are established while scanning. The 
third and the fourth type of attacks are Denial of 
Service (DoS) and Distributed Denial of Service 
(DDoS), depending on whether one or more of the 
bots are attacking the server. TCP (TCP SYN), UDP 
and HTTP (by POST method) floods occur in both 
DoS and DDoS scenarios. Information theft, 
comprising of data theft and keylogging as fifth and 
sixth major types of attack, is the last of malicious 
activities, realized during dataset gathering. Data 
theft is accomplished from Workstation 2 (Fig. 1) by 
the Metasploit platform to the Windows 7 
workstation through SMB vulnerability and by brute 
force over the access credentials for the Ubuntu 
Server [13], further exfiltrating large volumes of 
data. For keylogging the same weaknesses along with 
an open SSH service with weak credentials in the 
Server allow access to the users’ input. 

 
 
B. Features description and statistics 

Ten features are selected as most promising for attack 
classification in the Bot-IoT dataset by its authors 
[13]. The first one is seq – sequence number of record 
from the registering software (Argus), stddev – 
standard deviation of all inscriptions after 
compacting, N_IN_Conn_P_SrcIP – number of 
incoming connections associated with a source IP 
address, min – minimal period of time for compacted 
records, state_number – number, which describe the 
state of a feature, mean – average period of time for 
compacted records, N_IN_Conn_P_DstIP - number 
of incoming connections associated with a 
destination IP address, drate – packets rate from 
destination to source, srate – packets rate from source 
to destination,  max – maximal period of time for a 
compacted records. Against each record there is a 

label, comprising of 2 fields (general type and sub-
type) for the type of attack and in a separate field 
whether it is an attack or normal traffic. For the 
purposes of this study, only the second label which 
could be either 0 (normal traffic) or 1 (attack), putting 
it as a categorical variable and being the target value 
for the propose classifier. 
The dataset is divided in 2 parts (2 separate files in 
comma-separated values format (csv)) – training set 
which has 2 943 817 samples, of which 370 non-
attacks, and testing set with 733 705 samples, of 
which 107 non-attacks. In order to prioritize the 
features based on their significance for the 
classification, the following parameters are found 
over the training set: 

 Information gain, [14]: 
 

 𝐼𝐺(𝑇𝑆, 𝑓) = 𝐻(𝑇𝑆) −
∑ 𝑃𝑓(𝑣)𝐻(𝑆𝑓(𝑣))𝑣𝜖𝑣𝑎𝑙𝑠(𝑓) , (1) 
 
where IG is the information gain, TS – the set of 
training samples, f – particular feature, H – entropy, 
v – given value of a feature, Sf(v) – sub-set of training 
samples for which selected feature f has a value of v, 
Pf(v) – categorical probability distribution on the 
values v of a given feature f. 

 Information gain ratio, [14]: 
 
 𝐼𝐺𝑅(𝑇𝑆, 𝑓) = 𝐼𝐺(𝑇𝑆, 𝑓)/𝐼𝑉(𝑇𝑆, 𝑓), (2) 

 
where IGR is the information gain ratio and IV is the 
intrinsic value, defined as: 
 

𝐼𝑉(𝑇𝑆, 𝑓) = − ∑
|{𝑡 ∈ 𝑇𝑆|𝑣𝑎𝑙(𝑡, 𝑓) = 𝑣}|

|𝑇𝑆|
𝑣∈𝑣𝑎𝑙(𝑓)

. 

 . log
2

(
|{𝑡∈𝑇𝑆|𝑣𝑎𝑙(𝑡,𝑓)=𝑣}|

|𝑇𝑆|
),  (3) 

 
where t is specific example for attribute f. 
 

 Gini coefficient, [14]: 
 

 𝐺 =
2 ∑ 𝑖𝑡𝑖

𝑛
𝑖=1

𝑛 ∑ 𝑡𝑖
𝑛
𝑖=1

−
𝑛+1

𝑛
, (4) 

 
where G is the Gini coefficient over a population 
from any real distribution, consisting of values ti 
ordered in ascending order for i = 1÷n.  

The resulting values for IG, IV and G for the 
complete training set are shown in Fig. 2. The most 
notable distinction of feature concerns seq and 
N_IN_conn_P_SrcIP, which are 2 orders of a 
magnitude lower than the rest 8 features. That is the 
main motivating factor in our experimentation to try 
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discriminating normal vs. attack traffic, not only 
using all 10 features, but also just 8 of them. 
 

 
Fig 2: Features ranking 

 
The minimal, maximal, and center values for all 

features is given in Table 1, along with their 
dispersion.  

 
Table 1: Features’ values distributions 

Feature Center 
Disper-

sion Min. Max. 
max 3.02 0.61 0 5 
srate 3.13 250.79 0 1.106 
drate 0.43 130.68 0 5.9.104 

N_IN_Conn
_P_DstIP 92.46 0.20 1 102 

mean 2.23 0.68 0 4.98 
state_num-

ber 3.13 0.38 1 11 
min 1.02 1.46 0 4.98 

N_IN_Conn
_P_SrcIP 82.55 0.30 1 100 

stddev 0.89 0.92 0 2.50 
seq 1.2.105 0.62 1 2.6.105 

 
 
During training and testing with the specifically 

designed classifiers all features are being normalized 
by the min-max approach [15]: 

 
 𝑝𝑖𝑛 = (𝑝𝑖 − 𝑝𝑚𝑖𝑛)

(𝛽−𝛼)

(𝑝𝑚𝑎𝑥−𝑝𝑚𝑖𝑛)
+ 𝛼, (5) 

 
where pin is the normalized value for particular input 
value pi of a feature, given pi ϵ [pmin, pmax] and pin ϵ 
[α, β]. In this study α = 0 and β = 1. 

The 10-bin histogram for each feature is presented 
in Fig. 3. It could be observed a particular similarity 
between the distributions of the 
N_IN_Conn_P_SrcIP and N_IN_Conn_P_DstIP 

features and as it is demonstrated below these 
features are also highly correlated. 

 

a b 

 c d 

e f 

 g h 

 i j 
 

Fig 3: Features’ histograms: a – max, b – srate, c- drate, d – 
N_IN_Conn_P_DstIP, e – mean, f – state_number, g – min, h – 

N_IN_Conn_P_SrcIP, i – stddev, j – seq 
 

The correlation on a pair-wise basis for the first 
20 most strongly connected features, using Pearson 
and Spearman coefficients, is shown in Fig.4. The 
Pearson coefficient is calculated according to [15]: 

 

 𝑟𝑓𝑔 =
∑ (𝑓𝑖−�̅�)𝑛

𝑖=1 (𝑔𝑖−�̅�)

√∑ (𝑓𝑖−�̅�)
2𝑛

𝑖=1
√∑ (𝑔𝑖−�̅�)

2𝑛
𝑖=1

, (6) 

 
where f and g are two distinctive features from the 
training set with mean values 𝑓 ̅and �̅�, respectively, 
and n is the size of the training set. The Spearman 
coefficient rs is found in a similar way to (6) but 
taking in to account the rank variables [15]: 
 

 𝑟𝑠 =
𝑐𝑜𝑣(𝑟𝑘𝑓,𝑟𝑘𝑔)

𝜎𝑟𝑘𝑓
𝜎𝑟𝑘𝑔

, (7) 

 
where rkf and rkg are the ranks of the features’ raw 
values f and g, and σ denotes standard deviation of 
the respective parameter. 
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Fig 4: Pair-wise features correlation 

 
The successive number of record seq is met 4 

times in the first 20 correlation dependencies, which 
is also true for the N_IN_Conn_P_SrcIP. Both 
features form strong connections with the 

N_IN_Conn_P_DstIP feature. This is another reason 
to try testing only 8 features with the proposed 
classifier – without seq and N_IN_Conn_P_SrcIP - 
as a second comparing experiment to that of using all 
10 features. 
 
 
C. Proposed neural classifier general structure 

One of the main goals of the presented study is to 
propose a simpler structure of a classifier to others, 
such as the Recurrent Neural Network, described in 
[13] for the same task of discriminating attacks from 
normal activities by traffic monitoring. This allows 
both the time execution during training and 
classification and the memory consumption to be 
lower. The general structure of the classifier, 
developed here, is presented in Fig. 5. It is 
feedforward neural network with backpropagation 
algorithm for training [16]. 
 

 
Fig 5: Proposed neural network for classification 

 
All the features, employed for classification, form 

a vector 𝑓 = {𝑓1, 𝑓2, … , 𝑓𝑁1
}, where N1 = 10 for the 

complete set, described in Section 2.2. The weights 
of a neuron from layer lk, where k = 1÷3, that is an 
input layer, a hidden one and an output layer, are 
𝑤𝑖

𝑘⃗⃗ ⃗⃗ ⃗⃗ = {𝑤1𝑖
𝑘 , … , 𝑤𝑁𝑘𝑖

𝑘 }, leading to outputs of all 
neurons from the same layer lk, ordered as a vector in 
the form 𝑜𝑘⃗⃗ ⃗⃗⃗ = {𝑜1

𝑘 , … , 𝑜𝑁𝑘

𝑘 }. One and the same type 
of activation function gk, k = 1÷3, is used among all 
neurons from a particular layer, although activation 
functions from different layers are different, 
described in Section 3 within the experimental 
results. Before training the network is fully connected 
and it is initialized with the first set of features, 
passed from the training set 𝑓1

⃗⃗⃗⃗ . The output of any 
neuron can be expressed in the following generalized 
form [16]: 

 
 𝑜𝑖

𝑘 = 𝑔𝑘 (ℎ𝑖
𝑘

) = 𝑔𝑘 (𝑤𝑖
𝑘⃗⃗ ⃗⃗ ⃗⃗  . о𝑘−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑏𝑖

𝑘
) = 𝑏𝑖

𝑘 +

∑ 𝑤𝑗𝑖
𝑘𝑁𝑘

𝑗=1 𝑜𝑗
𝑘−1,  (8) 

 
where hi

k is the product of the input signals for a 
neuron i from layer k with its associated weights, bi

k 
– the bias of the same neuron. 

The training process involves the set of pairs F = 
{(𝑓1

⃗⃗⃗⃗ , 𝑡1), … , (𝑓𝑀
⃗⃗ ⃗⃗⃗, 𝑡𝑀)}, where for each feature vector 

𝑓𝑖
⃗⃗⃗ for i = 1÷M, there is expected value, or target, as 
an output ti. Cost function is the Mean Squared Error 
(MSE), [16]: 

 
 𝑀𝑆𝐸 =  𝐸(𝐹) =

1

𝑀
∑ (𝑜𝑖 − 𝑡𝑖)

2𝑀
𝑖=1 , (9)  

 
where E is the expectation operator, applied over all 
realizations during training, which explicit aim is 
minimizing MSE. It is achieved by iterative changes 
of both weights and biases, according to [16]: 
 
 ∆𝑤𝑖𝑗

𝑘 = −𝛼
𝜕𝐸(𝐹)

𝜕𝑤𝑖𝑗
𝑘 , (10) 
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 ∆𝑏𝑖
𝑘 = −𝛼

𝜕𝐸(𝐹)

𝜕𝑏𝑖
𝑘 , (11) 

 
where α is the learning rate. 
 
 
D. Classifier optimization algorithm 
There is no general approach that could indicate how 
to select the number of neurons in the hidden layer N1 
of the network, described in Section 2.3. That’s why 
the following general scheme (Fig. 6) for their 
selection is applied during experimentation. 
 

 
Fig 6: Neural network optimization 

 
Five realizations of the network are tried with 

hidden neurons varying from 20 to 100 with a step of 
20. Given target values for minimal MSE and 
maximum number of epochs, in this case 1000, 
training continues until one of the criteria is met. 
From all 5 tested networks accuracy is compared, 
based on confusion matrices over the results of 
classification and then the optimal N1 is selected. This 
experiment is done for 4 different activation 
functions for the hidden neurons – Identity, Logistic, 
Tanh, and ReLU. Optimization is implemented with 
the full set of 10 features for not losing 
generalization.  Also, 2 algorithms for 
backpropagation are tested – the Adam optimization 
and the Scaled Gradient Descent (SGD). 

In order to evaluate the performance of the trained 
classifiers, the following measures are used [17]: 

 True Positives – TP – the number of samples, 
that are correctly classified as either attack or 
non-attack to the corresponding class during 
testing; 

 True Negatives – TN – the number of 
samples, that are correctly not associated 
with particular class; 

 False Positives – FP – the number of 
samples, that are incorrectly assigned to 
given class but do not belong to it; 

 False Negatives – FN – the number of 
samples, that actually belong to given class, 
but are wrongly associated to the other class; 

 Precision = TP / (TP + FP); 
 Recall = TP / (TP + FN); 
 Specificity = TN / (TN + FP); 
 F1 = TP / (TP + (FP + FN)/2); 
 Log-loss = -[t.ln(p) + (1-t).ln(1-p)], where t 

is the target value of a sample and p is the 
probability, found by the classifier that the 
very same sample belongs to the class, 
associated with the target. This parameter is 
found as average value over all samples; 

 Classification accuracy – CA = (TP + TN) / 
(TP + TN + FP + FN); 

 Area Under Curve – AUC – the probability 
that the classifier ranks arbitrary selected 
positive sample higher than an arbitrary 
selected negative sample. 

 

 

III.  EXPERIMENTAL RESULTS 
The hardware platform, used for testing, consists of 
Intel Xeon E5-1620 CPU with 4 cores, operating in 
hyper-threading mode at 3.50 GHz. The processor 
holds L1 cache of 256 kB, L2 – 1 MB and L3 – 10 
MB. The size of RAM memory is 64 GB, and the size 
of the HDD is 2 TB. All components are under the 
control of MS Windows 10 Pro 20H2. Orange v. 3.28 
is the simulation environment, in which all neural 
network models are trained and tested. 

The results from finding the optimal network 
configuration are given in Fig. 7. 

 

 a 
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Fig 7: Optimizing the structure of the neural network by 

training algorithm and activation function 
 

The results in Fig. 7 show confusion matrices only 
for the case of 80 neurons. All values are obtained 
after validation of the full training set. Similar are the 
result as ratios between actual and predicted numbers 
of attacks and normal network communication. 

Execution times for both solvers and all activation 
functions are given in Table 2. 

 
Table 2: Execution times achieved by SGD and Adam 

optimization using 80 neurons in the hidden layer 

Algorithm Activation 
Function 

Training 
Time, sec 

Testing Time, sec 

Train set Test set 

SGD 

Identity 138.79 2.59 0.95 
Logistic 159.50 7.86 1.97 

Tanh 243.18 7.82 2.19 
ReLU 228.59 5.93 1.59 

Adam 

Identity 145.88 3.01 0.95 
Logistic 179.65 8.05 9.17 

Tanh 212.47 11.53 3.36 
ReLU 189.19 4.61 1.89 

 
Adam optimization turns out to be much more 

efficient than SGD in this binary classification 
problem (Fig. 7). The best accuracy is found for the 
Tanh activation function which is further tested 
(Tables 3 and 4). 

 
Table 3: Classifier performance at 10 features, validating the 

training set 
Cl. N1 AUC CA F1 Pre-

cision Recall Log-
loss 

Specifi-
city 

0 

20 0.9999 0.9999 0.8198 0.7929 0.8486 0.0001 0.9999 
40 0.9999 0.9999 0.7789 0.8498 0.7189 0.0001 0.9999 
60 0.9999 0.9999 0.8403 0.7559 0.9459 0.0001 0.9999 
80 0.9999 0.9999 0.7849 0.7807 0.7892 0.0001 0.9999 
100 0.9997 0.9999 0.8068 0.8503 0.7676 0.0001 0.9999 

1 

20 0.9999 0.9999 0.9999 0.9999 0.9999 0.0001 0.8486 
40 0.9999 0.9999 0.9999 0.9999 0.9999 0.0001 0.7189 
60 0.9999 0.9999 0.9999 0.9999 0.9999 0.0001 0.9459 
80 0.9999 0.9999 0.9999 0.9999 0.9999 0.0001 0.7892 
100 0.9997 0.9999 0.9999 0.9999 0.9999 0.0001 0.7676 

 
Table 4: Classifier performance at 10 features, using the test set 

Cl. N1 AUC CA F1 Pre-
cision Recall Log-

loss 
Specifi-

city 

0 

20 0.9999 0.9999 0.8148 0.8073 0.8224 0.0001 0.9999 
40 0.9999 0.9999 0.7539 0.8571 0.6729 0.0001 0.9999 
60 0.9999 0.9999 0.8448 0.7840 0.9159 0.0001 0.9999 
80 0.9999 0.9999 0.7714 0.7864 0.7570 0.0001 0.9999 
100 0.9998 0.9999 0.7960 0.8511 0.7477 0.0002 0.9999 

1 

20 0.9999 0.9999 0.9999 0.9999 0.9999 0.0001 0.8224 
40 0.9999 0.9999 0.9999 0.9999 0.9999 0.0001 0.6729 
60 0.9999 0.9999 0.9999 0.9999 0.9999 0.0001 0.9159 
80 0.9999 0.9999 0.9999 0.9999 0.9999 0.0001 0.7570 
100 0.9998 0.9999 0.9999 0.9999 0.9999 0.0001 0.7477 
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Results from training and testing the neural 
network with the Adam algorithm and Tanh when 
using 10 features and varying the number of neurons 
are given on a class (Cl.) basis. 

The evaluation parameters from validation of the 
complete training set with the classifier when using 8 
features, that is without seq and 
N_IN_Conn_P_SrcIP, are gathered in Table 5. 

 
Table 5: Classifier performance at 8 features, using the training 

set 
Cl. N1 AUC CA F1 Pre-

cision Recall Log-
loss 

Specifi-
city 

0 

20 0.9997 0.9999 0.6924 0.7356 0.6541 0.0002 0.9999 
40 0.9997 0.9999 0.6396 0.8008 0.5324 0.0002 0.9999 
60 0.9997 0.9998 0.4396 0.6818 0.3243 0.0002 0.9999 
80 0.9998 0.9999 0.7411 0.7212 0.7622 0.0002 0.9999 
100 0.9998 0.9999 0.7085 0.7689 0.6567 0.0002 0.9999 

1 

20 0.9997 0.9999 0.9999 0.9999 0.9999 0.0002 0.6541 
40 0.9998 0.9999 0.9999 0.9999 0.9999 0.0002 0.5324 
60 0.9997 0.9998 0.9999 0.9999 0.9999 0.0002 0.3243 
80 0.9998 0.9999 0.9999 0.9999 0.9999 0.0002 0.7622 
100 0.9998 0.9999 0.9999 0.9999 0.9999 0.0002 0.6567 

 
Testing the performance of the classifier over the 

whole test set with the same 8 features leads to the 
parameters from Table 6. 

 
Table 6: Classifier performance at 8 features, using the test set 
Cl. N1 AUC CA F1 Pre-

cision Recall Log-
loss 

Specifi-
city 

0 

20 0.9999 0.9999 0.6767 0.7362 0.6261 0.0002 0.9999 
40 0.9999 0.9999 0.6321 0.8208 0.5140 0.0002 0.9999 
60 0.9999 0.9998 0.4968 0.7407 0.3738 0.0002 0.9999 
80 0.9999 0.9999 0.7441 0.7407 0.7476 0.0002 0.9999 
100 0.9999 0.9999 0.7357 0.8255 0.6635 0.0002 0.9999 

1 

20 0.9999 0.9999 0.9999 0.9999 0.9999 0.0002 0.6261 
40 0.9999 0.9999 0.9999 0.9999 0.9999 0.0002 0.5140 
60 0.9999 0.9998 0.9999 0.9999 0.9999 0.0002 0.3738 
80 0.9999 0.9999 0.9999 0.9999 0.9999 0.0002 0.7476 
100 0.9999 0.9999 0.9999 0.9999 0.9999 0.0002 0.6635 

 
Confusion matrices when processing the full test 

set with the optimal classifier, which turns to have 
N1opt = 60 neurons for 8 features and N1opt = 80 
neurons for 10 features, are given in Fig. 8. These 
optimal configurations are obtained based on the 
minimal number of wrongly marked attacks as non-
attacks, while the number of missed attacks is 
negligible in virtually all cases (Fig. 7 and 8, and 
Tables 4 and 6). Both classifiers use the Adam 
optimization with Tanh activation function for 
neurons in the hidden layer. They are trained either to 
reaching MSEmin, according to the algorithm from 
Fig. 6, or T = 1000 epochs. Learning rate in all cases 
is α = 0.0001. 

 

 a 

 b 
Fig 8: Confusion matrices for the optimal classifier at 10 (a) and 

8 (b) features  
 

The time consumption during training with all the 
samples from the training set with 8 features and the 
time needed for classification with both the training 
and testing sets are given in Table 7. 

 
Table 7. Execution times, using 8 features, in sec 

N1 Training Testing 
Train set Test set 

20 110.62 3.93 0.99 
40 152.39 6.71 2.04 
60 194.45 8.71 2.20 
80 229.59 10.84 2.73 

100 238.87 13.36 3.22 
 

The respective execution times when using 10 
features are presented in Table 8. 

 
Table 8. Execution times, using 10 features, in sec 

N1 Training Testing 
Train set Test set 

20 121.24 4.23 1.06 
40 131.88 6.96 1.83 
60 200.79 9.51 2.45 
80 212.47 11.53 3.36 

100 243.13 14.15 3.42 
 

 

IV. DISCUSSION 
SGD algorithm leads to low classification accuracy 
of the non-attack samples – 1.62%, employing the 
Identity and ReLU activation functions for the hidden 
neurons and 0% - for the Logistic and Tanh (Fig. 7.e-
h). In the same time the Adam algorithm allows to 
have 2.43% for the Identity activation function, 
15.68% - for the Logistic, 78.92% - for the Tanh, and 
64.86% - for the ReLU correctly discriminated non-
attacks (Fig. 7.a-d). The level of correct classification 
of all kinds of attacks is high for all 8 initial tests, 
involving 80 neurons, for both SGD and Adam 
algorithms – 2.79.10-3% error for the worst case of 
Adam ReLU (Fig. 7.c). The execution times, 
registered during the training process, are smaller 
when the Adam optimization uses Tanh and ReLU 
activation functions, compared to SGD with the same 
functions – by a factor of 0.85 on average (Table 2). 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2022.16.81 Volume 16, 2022

E-ISSN: 1998-4464 660



SGD with a combination of Identity or Logistic 
activation function is faster than the Adam algorithm 
during training – around 1.09 times. The test phase 
takes almost the same time between each pair of 
classifiers, using one and the same activation 
function, no matter of the training algorithm used. 
The exception of 9.17 sec for the Logistic case is 
considered to be an outlier, coming as an exception 
from experimentation. Among all 4 activation 
functions the most time for testing occurs for the 
Tanh and the least – for the Identity function with a 
difference of around 2.5 times. Given the 
classification accuracy, the combination of Adam 
algorithm and Tanh activation function are selected 
for all further tests. 

Varying the number of hidden neurons from 20 to 
100 when using all 10 features leads to high average 
classification accuracy of 0.9999 for both attack and 
non-attack samples (Table 3 and 4). However, the F1 
score reveals a particular drop for the non-attack class 
(Cl. = 0) with least value of 0.7539 for 40 neurons 
trying the test set (Table 4). The same measure is 
constantly bounding to 0.9999 in all cases for Cl. = 1, 
which is also true for the Precision and Recall 
measures, while Logloss is 0.0001. In the same time 
Precision and Recall drop to 0.7840 and 0.6729 for 
60 and 40 hidden neurons, respectively for Cl. = 0. 
Specificity stays constantly high, equal to 0.9999, for 
the non-attacks but goes down to 0.6729 for 40 
neurons for the attack samples. The optimal 
configuration of a binary classifier, working on 10 
features, includes 60 hidden neurons, being trained 
with the Adam optimization algorithm and using 
Tanh activation function in the hidden layer. Only 
8.4% from all non-attacks are misclassified in this 
case along with 3.68.10-3% missclassifications for 
the attack samples (Fig. 8.a). 

Reducing the feature set to 8 parameters preserves 
the classification accuracy to 0.9999 in most of the 
cases (Tables 5 and 6) with the exception of 60 
hidden neurons, where it is slightly lower – 0.9998. 
The area under the curve (AUC) is also high – 
dominantly 0.9999, but the F1 measure drops from 
around 0.2 to 0.4 with the change of the number of 
hidden neurons. Its lowest point is for 60 neurons – 
0.4396 for Cl. = 0 and for Cl. = 1 – it is always 
0.9999. Similar to the case of 10 features, 
classification of attacks is very accurate, which is 
also seen from the Precision and Recall, being equal 
to 0.9999. The Logloss is 0.0002 for both attack and 
non-attack samples, but only attack samples yields 
Specificity of 0.9999. Cl. = 1 testing reveals 
Specificity of 0.3243 for 60 hidden neurons when 
validating the classifier over the full train set and 
0.3738 – over the test set as the minimum for this 

parameter. The best result is obtained for 80 neurons 
with 74.77% correctly classified non-attacks and 
3.82.10-3% misclassified attacks (Fig. 8.b). Again, 
Adam optimization when using Tanh activation 
function for the hidden layer gives these optimal 
results. Obviously, this classifier with reduced 
feature set is more inaccurate than the 10-feature 
implementation with 16.83% less with regard to non-
attacks, raising more false alarms. Given the 
execution times (Tables 7 and 8) at N1 = 60 for 10 
features and N1 = 80 for 8 features, which are very 
close with an absolute difference of 0.28 sec 
(3.82.10-7 sec/sample), making the first one faster, it 
is natural to select it as the optimal version of a 
classifier and further use it in practical 
implementations. 

Finally, a comparison is made of both the 8- and 
10-feature classifiers, proposed in this study, with a 
Recurring Neural Network (RNN), described in [1], 
operating over the same training and testing set. As it 
can be seen from Table 9, the Recall, F1 measure and 
CA are higher for the two implementations of the 
feed forward neural network. Precision is lower by 
0.0001 for the 8-feature variant, while the 10-feature 
produce the same result as the RNN. Given the more 
complex structure of the RNN, with 20, 60, 80 and 
90 neurons in 4 hidden layers, and the overall 
achieved accuracy, the proposed optimal classifier 
from the current research would be preferable to use 
for detecting DoS, DDoS, theft and reconnaissance 
type of attacks. 
 

Table 9. Classification efficiency comparison on average 
parameters for both classes 

Parameter 
RNN - 10 
features, 

[1] 

Proposed - 
10 features 

Proposed - 
8 features 

Precision 0.9999 0.9999 0.9998  
Recall 0.9975 0.9999 0.9998 

F1 0.7338 0.9999 0.9998 
CA 0.9974 0.9999 0.9998 

 

 
V.  CONCLUSION 

In this paper a new model of feedforward neural 
network with one hidden layer is proposed, capable 
of detecting DoS, DDoS, theft and reconnaissance 
activities over IP packet switching networks, aimed 
at particular victim machines. The optimal structure 
of the classifier consists of 10 inputs, 60 hidden 
neurons using hyperbolic tangent activation function 
and 1 single output for binary discrimination to attack 
vs. non-attack activity. Most accurate result from 
training is achieved by the Adam optimization 
procedure. Analogous neural network model, 
incorporating only 8 from the 10 features with 80 
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hidden neurons, behaves also accurately enough and 
together with the 10-feature implementation achieve 
better accuracy than a 4 hidden layers Recurring 
Neural Network over the same test base. The 
proposed classifier is considered promising for 
practical implementation as a component of an online 
monitoring system, mainly against DDoS attacks in 
packet switched networks. 
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