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Abstract— In this study tremor data of 25 subjects 

(Senile tremor = 5, Alcohol induced tremor = 9, Healthy 

individuals = 11) were collected using a wearable device 

consisting of five Inertial Measuring Units (IMUs) and an 

embedded optical sensor. The subjects were made to draw 

the Archimedes spiral under the influence of external 

stressors. Features were extracted from measured 

acceleration data and also from an optical sensor. Using 

the selected features few supervised machined learning 

algorithms were explored for automatic classification of 

tremor. Performance matrix used to evaluate the classifier 

was accuracy, recall, and precision. It is observed that the 

algorithms are able to accurately classify healthy, senile 

tremor and alcohol induced tremor. 
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I. INTRODUCTION 

Research on tremor classification is vast and growing rapidly. 
Human tremors are assessed by using clinical rating scales and 
biomechanical sensors. Analysis using spiral drawing is a 
popular method which is simple, easy to administer [10]. 
Tracing the spiral is considered as a better approach as it 
activates the multiple muscles and joint in the arms [10]. 
Several studies use the automatic scoring system and clinical 
rating scale in unison to attain a more objective and 
sophisticated diagnosis and to provide clinical efficacy [56]. 

A. Background 

Rhythmic oscillatory movement of a body part is defined as 
tremor and is the most common movement disorder. Tremor is 

 

difficult to diagnose and manage [57]. Tremor is a disease 
which progresses gradually. It is associated with indications 
such as postural instability, slowness of movement, and 
rigidity [1-3]. Rigidity can be defined as inflammation and 
opposition to movement in joints. For most tremor patient’s 
symptoms are observed in the upper extremities of the body. 
Tremor patients facing problems or slowness when performing 
daily life tasks such as dressing, writing and using utensils is 
an indication of slowness of movement. Method for an 
assessment of slowness of movement usually identified by 
making the patients perform repetitive and cyclic movements 
of the upper limbs. Postural instability is seen at a later stage 
as the ailment progresses.  

Tremors are influenced by drugs, physiological and 
psychological factors. Tremors vary in frequency and 
amplitude. Categorization of tremor depends on posture, 
position and the movement. A resting tremor elicits when the 
body part is still [57]. A postural tremor transpires with 
sustained posture and kinetic tremor with displacement [57]. 
Essential tremor, which is a most common tremor, has a cycle 
rate between four and eight Hz and occurs in the upper and 
lower extremities. Parkinson's disease (PD) causes a 4 to 6Hz 
resting tremor in arms and legs. Tremor associated with PD 
occurs when the muscles are relaxed and are at rest. Tremor 
can also be a manifestation of various diseases like Wilson's 
disease, lesions of the cerebellum and midbrain, peripheral 
neuropathy, trauma, abuse of alcohol, and conversion 
disorders [17].  

Life of a tremor patient is impacted during the entire duration 
of the disease. In some patients, tremor reduces in the late-
stage [18] [19]. This could be attributed to the incongruity 
between tremor rankings among initial and late-stage tremor 
subjects. Tremor is a significant cause of social anxiety and 
mortification that deleteriously affects initial-stage patient’s 
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sense of safety, and comfort [18] [19]. Louis et al. conducted a 
survey of 103 tremor patients and summarized that more than 
one-quarter agreed with experiencing embarrassment [20]. In 
an independent survey of 100 tremor patients, 36% expressed 
an experience of social stigma [21]. Findings from the research 
emphasize the psychosocial impact on patients with early-stage 
tremor. Tremor also affects day today life of patients. More 
than 30% of people with early-stage tremor expressed tremor-
related difficulty with writing, using a type-writer or computer 
keyboard, using mobiles, dressing, ingestion, and holding a 
book [20]. Average age at tremor onset is found to be 55–65 
years [22, 23], many people are still labouring when they first 
noticed tremor. 

There are various tremor assessment techniques [33, -37]. An 
effective method for early detection of tremor would be a boon 
to the disease detecting process. Spiral analysis uses 
Archimedean spiral to measure motor activity. It is also used 
to assess the movement disorder symptoms such as tremor, 
firmness, and slowness of movement [4] [5]. In 2008, Pullman 
et al. carried out a legitimacy study of spiral analysis for its 
suitability to motor activity evaluation in Parkinson Disease 
[6]. Liu et al. measured drug-induced dyskinesia in the arms 
using spiral templates of a circular and a square shape [7]. 
Miralles et al. proposed a quantitative method using digitized 
image of Archimedean spiral [8]. Aly et al. proposed 
automation for estimation of tremor using a task of tracing a 
pentagon shaped spiral [9]. There are also other research 
studies based on spiral analysis and applications developed for 
mobile platforms for tremor detection [11-15].  

Digital drawing tablets, laser-based displacement transducers, 
video tracking, Infrared cameras, and electromyography 
(EMG) have been used to evaluate tremors quantitatively [24-
32]. Accelerometer provides objective measure of tremor 
frequency and hence is generally accepted as a gold standard 
[38,39]. Fourier transform is one of the method for 
determination of tremor frequency and amplitude. Analysis is 
often done in frequency domain using the methods based on 
(Fast Fourier Transform (FFT), Power Spectral Density 
(PSD)) [40, 41]. For example, the tremor frequency is 
determined as the peak in the PSD. Tremor amplitude can be 
estimated from the area under PSD peak. Alternatively, there 
are studies in the literature such as time-domain approaches 
based on thresholds [41], approaches based on Short Term 
Fourier Transform (STFT), Empirical Mode Decomposition 
(EMD) [43], parametric identification methods [42]. Gravity 
and inertial acceleration was investigated as an alternative to 
commonly used direct spectral analysis methods of measuring 
acceleration [44]. 

Studies were conducted for automatically evaluating   the 
score for gait tasks [46-49],[58], bradykinesia [45, 50], finger-
tapping task [51,52], and PD tremors [53-55]. Supervised 
learning and regression models were used to automatically 
obtain a score for gait and bradykinesia tasks [45–55]. 
Supervised learning models were used to evaluate the rating 

scale for the digit-tapping task and Parkinson Disease tremors 
[51–55]. 

However, in the literature there have been no studies which 
focus on effect of external stressors. In previous work [59], 
presented the design of a smart glove for measuring tremors in 
real time, while the subjects were tracing an Archimedes 
Spiral. The study [59] was limited to just two subjects and the 
acquired measurements were not sufficient for accurate 
classification. In the present study, a low-cost wearable 
sensing system is used which shall be worn by the subject such 
that a sensor is mounted on each finger of the patient. With the 
help of a laser diode mounted on the index finger, patient shall 
re-trace the spiral displayed on the screen. Patients are 
instructed to climb the stairs up and down and then trace the 
spiral. Statistical features are extracted from accelerometer and 
spirogram pixel distance signals. These parameter or features 
are fed as input to machine learning algorithms for automatic 
classification of tremor. The paper is organized into two 
subdivisions. In subdivision 2, materials, methods and tremor 
analysis during a task subject to external stressors have been 
discussed. In section 3, we present the experimentation and 
analysis on tremor subjects and healthy subjects from the test 
is discussed. Therefore, this paper explains a machine-learning 
methodology to objectively measure and precisely assess 
tremor. 

II. MATERIALS AND METHODS 

This research work was carried out at Aluru Primary health 
centre which is located at Davanagere Taluk, Karnataka, India. 
The subjects were pre-screened for presence of tremor by a 
physician and selected for the study. The clinician was 
instrumental in selection and also supervised the process of 
data collection. Twenty-five subjects with and without tremor 
(average age: 59 ± 10-years, 7 females, 18 males) participated 
in this study. All of these subjects (rural and urban) voluntarily 
participated in the study. Among them fourteen were clinically 
diagnosed as experiencing tremor.    

  A. Data Acquisition and Analysis 

A low-cost custom designed wearable sensing system [58] was 
used for this study to acquire the tremor data. Figure 1 shows 
the wearable sensing device used for the study and pictures of 
subjects wearing sensing device. The wearable glove is 
equipped with five IMUs (MPU6050) which are interfaced to 
a microcontroller via an Inter Integrated Circuit (I2C) 
multiplexer. The triple-axis Micro Electro Mechanical Systems 
(MEMS) accelerometer in MPU6050 can sense up to ±16 g 
along the three Cartesian axes, and the gyroscope has 
sensitivity of  ±2000 dps (degrees per second). 
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Figure 1. Subjects with wearable sensing device. 
 

 
Figure 2. Experimental setup and data processing 

The experimental setup used for data acquisition and analysis 
is as shown in Figure 2. The subjects were asked to retrace an 
Archimedes spiral projected on the screen under external 
stressors. Archimedes spiral as in Figure 2, is a locus 
corresponding to the locations over time of a point moving 
farther from a reference point. The spiral is projected onto a 
wall, the subject’s glove is embedded with a high intensity 
LED and IMUs and the subject is asked to trace the projected 
spiral image while standing at a distance of 4.5 meters and not 
supported against gravity. The subjects were subjected to 
external stressors, they were made to climb a flight of stairs 
multiple times (Subjects run down and up one floor for one 
time, two time and three times). Immediately after the 
completion of the activity, they were made to trace the 
Archimedes spiral while wearing the instrumented glove.  
Tremor signals were acquired when each subject was tracing 
the Archimedes spiral which was projected on a screen for 80 
seconds. A High Definition (HD) camera simultaneously 
recorded the spiral tracing for evaluation. In our work all five 
Inertial Measuring Units (IMU) accelerometer data was 
recorded at a sampling rate of 100 Hz. Acquired accelerometer 
data was segmented after eliminating the first 10s and the last 
10s in order to remove any data outliers. Accelerometer data 

representing acceleration in three cartesian direction is 
converted into g unit, where g represents acceleration due to 
gravity (1g = 9.81 ). Then the absolute value of 

acceleration,  is calculated as follows 

       nananana yyxxyz

222
 ……(1) 

FFT analysis of the pre-processed data from all five IMUs is 
performed. FFT plots of Power spectral density (PSD) for two 
subjects are shown in Figures 4, 5 and rest in Appendix. Figure 
3 shows the steps followed to obtain FFT PSD plots. 
Accelerometer raw data is converted to 1g data by dividing 
raw data values with a scaling factor as specified in the IMU 
datasheet. Absolute value of acceleration is calculated from x, 
y and z axis 1g converted data. Absolute value is filtered using 
Butterworth filter of fifth order with a cut off frequency of 25 
Hz. FFT is computed on the filtered data and PSD plots are 
obtained. 

 
Figure 3. Flow diagram to obtain FFT-PSD plots  

The spiral tracing was recorded using a HD camera this was 
processed offline to calculate Pixel Distance Error (PDE). 
PDE is the distance between the point on the reference spiral 
and the corresponding point on the path traced by the subject.  
Pixel Distance Error (n) = abs (Reference Pixel (n) - Traced    
                                             Pixel (n)    ……..(2)) 
The traced Archimedes spiral drawn is captured using a 
camera system, for a total of 14 subjects is shown from Figures 
4 and 5 for two subjects and the rest are in Appendix. Figures 
4 and 5 shows pixel distance for the collected data.  Pixel 
distance between Archimedes and traced spirals is calculated. 
As seen from the Figure 4 and 5, it is observed that mean pixel 
distance for subjects (having clinical tremor) is larger than 
subjects (who do not have clinical tremor). Mean pixel 
distance of subjects (having clinical tremor) is far from zero 
because of non-smooth tracings with sharp edges. Mean pixel 
distance of subjects (who do not have clinical tremor) is closer 
to zero because of smooth tracings. Mean, Median, Variance 
and Standard deviation are computed for the subjects (with 
and without tremor) and plots are shown in Figures 6, 7, 8 and 
9. We also observed that the Alcohol induced tremor subjects 
have a standard deviation of pixel distance error less than 10 
and Senile tremor subject’s standard deviation of pixel 
distance error above 15. 
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Subject without tremor - tracing Archimedes spiral 
after climbing flight of stairs 

Note: Jumps are less pronounced. 

 
Pixel distance between Archimedes spiral and 

subject without tremor traced line 

 

Power spectral density of subject without tremor 
Figure 4. Subject without tremor - Age 62 

 
Subject with senile tremor - tracing Archimedes 

spiral after climbing flight of stairs 
Has non-smooth tracing with jumps 

 

Pixel distance between Archimedes spiral and 
subject with senile tremor traced line 

     
Power spectral density of subject with senile tremor 

Figure 5. Subject with senile tremor - Age 68 

This indicates that the two sets of standard deviation values 
(are from senile tremor and the other set from alcohol induced 
tremor) seemed to be distinct; in principle this may form a 
distinctive feature for identification of tremor cause. 

B. Tremor Analysis during a task subject to external     

     Stressors. 

In this section we analyse the Archimedes spiral drawn by the 
subjects after they have been subjected to external stressors. 
The stressors themselves vary from mild to strong. The mild 
stressor involved the subjects running up and down a single 
flight of stairs (between two floors) once. The strongest 
stressor they were subject to involved running up and down the 
same flight of stairs three times. After being subjected to the 
stressors the subjects are required to trace out the Archimedes 
spiral while wearing the sensor glove with the embedded IMUs 
and LED. Mean, Median, Variance and Standard deviation 
value of the pixel distance is calculated for the subjects. 
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 Figure 7. Median of pixel 
distance of tremor subjects is 
greater than healthy subjects 

Figure 6. Mean of pixel 
distance of tremor subjects is 
greater than healthy subjects 

 

Figure 8. Variance of pixel 
distance of tremor subjects is 
greater than healthy subjects 

 

Figure 9. Standard 
deviation of pixel distance 

of tremor subjects is 
greater than healthy 

subjects 

Figures 6, 7, 8 and 9 show the mean, median, variance and 
standard deviation error between the spiral traced by the 
subjects and the correct Archimedes spiral. As seen from 
Figure 6, mean of pixel distance for all tremor subjects is 
closer to 39 whereas mean of pixel distance for healthy 
subjects is closer to 22. Standard deviation of pixel distance 
for all tremor subjects is closer to 24 whereas standard 
deviation of pixel distance for healthy subjects is closer to 7, 
as seen from Figure 9. 

III. Experimentation and Analysis 

Our experimentation involved study of 25 subjects. The 
analysis from these subjects is taken forward to construct an 
efficient tremor – non tremor classifier model. 

A.  Dataset 

In this study, both video and accelerometer data of 25 subjects 
were collected. Out of 25 subjects, 14 subjects had tremor.  

Total Subjects (25) 

Tremor Subjects (14) Healthy 
Subjects (11) 

Senile 
Tremor (5) 

Alcohol Induced 
Tremor (9)  

For our first analysis, five sensors were employed. Six features 
for each five sensors were extracted i.e thirty features. 
Statistical features like mean, median, variance, standard 

deviation, skewness and kurtosis are derived from absolute 
value of acceleration (AVA) signal. The dataset generated with 
all subjects, using accelerometer data is denoted as DS-ACC.  

The second analysis was conducted by asking the subjects to 
trace the Archimedes spiral. The reference spiral was projected 
on the wall and the subjects were asked to trace using the laser 
diode, mounted on the glove of the index finger. The video 
recording of the same was captured. The analysis of the video 
aimed at the deriving the Pixel distance between reference and 
traced spirals is calculated. The pixel distance error indicated 
the severity of the tremor within the subjects. Six features 
namely, mean, median, variance, standard deviation, skewness 
and kurtosis features are derived from pixel error signal. The 
dataset generated with all subjects, using the pixel distances is 
denoted as DS-ASV. 

Dataset1 (DS-ACC) comprises a total of thirty features 
(derived from accelerometer experiment). Dataset2 (DS-ASV) 
consists of six features (derived from the Archimedes model). 
Dataset3 (DS-ACC-ASV) is a compilation of attributes from 
dataset1 and dataset2.  

 B. Classifier Model 

Automatic tremor classifier based on the temporal features was 
developed using machine-learning algorithms: Logistic 
regression, Naive Bayes, Random Forest, K nearest neighbor 
(KNN), Decision Tree (DT) and Support Vector Machine 
(SVM) algorithms were employed for estimating the presence 
of tremors. The data were subjected to 5 cross validations. The 
results were averaged and tested against the above reference 
models. The kernels employed with SVM were linear. Radial 
basis function (RBF) and sigmoid. All offline analyses were 
carried out using Python and Machine learning libraries. The 
performance measures Accuracy, precision, recall and F Score 
were used for analysis. 

 C. Test Bed. 

A three-step experimental setup is built for coming up with an 
efficient identification of tremor subjects.  

 

Figure 10. Accelerometer data (DS-ACC) classifier model 

Our first setup is as shown in Figure 10. In this study, the 
model was trained for the features of the accelerometer data 
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(DS-ACC). The classifier model was trained and tested against 
the accelerometer data. The processed feature values were 
retrieved from raw data from five sensors attached to each 
finger of the subject’s hand. Figure 11 shows the second setup 
for constructing the classifier model. Features extracted from 
Archimedes spiral (DS-ASV) were taken for analysis. The 
model was constructed on six feature datasets.  

 

Figure 11. Spiral video data (DS-ASV) classifier model 

Our last setup is to combine all the features derived from the 
experimental process involving the features extracted from 
accelerometer and Archimedes spiral video (DS-ACC-AVS). 
The proposed classifier model is as shown in Figure 12. 

 

Figure 12. DS-ACC-ASV data classifier Model 

D. Discussion and Results. 

The performance of various classifier models is recorded and 
analysed. The evaluation metrics to measure the efficiency of 
the model are Accuracy, Precision, Recall, F1 score.  

Accuracy score is plotted indicating the classifier performance 
for tremor detection as shown in Figure 13. 

 
Figure 13. Accuracy score of classifiers for DS-ACC, DS-

ASV, DS-ACC-ASV 

Accuracy scores as shown in Figure 13 indicates that the 
feature data set of Archimedes spiral video (DS-ASV) is most 
efficient. On comparison of accuracy values SVM is the best 
classifier. Feature set of DS-ACC-ASV also have given 
comparable performance in classifying Tremor and Non 
tremor subjects. 

 

Figure 14. Precision score of classifiers for DS-ACC, DS-
AVS, DS-ACC-AVS 

Precision scores as shown in Figure 14 indicate the goodness 
of classifier against the tremor subjects. Commendable results 
are obtained from SVM classifiers. Good performance was 
also obtained from DS-ASV to identify the positive 
predictions. 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2022.16.69 Volume 16, 2022

E-ISSN: 1998-4464 556



 

Figure 15. Recall score of classifiers for DS-ACC, DS-AVS, 
DS-ACC-AVS 

As seen from Figure 15, the feature sets of DS-ACC-ASV 
significantly outperformed for Random Forest, Decision Tree, 
SVM RBF classifiers to identify Tremor subjects.  

 

Figure 16. F1 score of classifiers for DS-ACC, DS-AVS, DS-
ACC-AVS 

As seen from bar graph (Figure 16), F1score improves the 
overall performance of model. Figure 17, summarises the 
overall performance of the classifier model. Accuracy and 
error rate are the universally accepted standard metrics for 
estimating the performance of classification models. Accuracy 
score result for DS-ACC-ASV shows that Naïve Bayes, 
Random Forest, Decision Tree and SVM classifiers predicted 
tremor and non-tremor subjects more accurately. 

 
Figure 17. Classifier performance chart 

IV. CONCLUSION 

In this work, a novel low-cost wearable sensing device was 
designed to analyze tremor signals using microcontroller, 
IMUs and an optical sensor. A novel spirogram analysis was 
performed using a single camera, a laser diode and our 
instrumented glove. Unlike in standard clinical approaches 
where touch sensitive digitized screens are used for 
handwriting analysis, our proposed system, showed capability 
of performing tremor analysis for various functional tasks – 
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apart from just handwriting analysis. Further, subjects were 
given external stressors (physical stressors) before having to 
draw a spirogram. The presence of tremors was detected by the 
development of an automatic tremor detection system using 
machine-learning approaches. The use of Naïve Bayes, 
Random Forest, Decision Tree and SVM were explored with 
three kernels for the selected features. Accuracy and error rate 
are the universally accepted standard metrics for estimating the 
performance of classification models. Accuracy score result 
for DS-ACC-ASV shows that Naïve Bayes, Random Forest, 
Decision Tree and SVM classifiers predicted tremor and non-
tremor subjects more accurately. The principal advantage of 
our approach is to provide reliable tremor prediction using a 
wearable sensing device in the presence of external stressors. 
To conclude, detecting tremors through analysis of patterns 
drawn by the subjects was found to be a promising and 
convenient method of estimation. The process was reliable and 
stable under various physical stress factors such a climbing a 
flight of stairs. As an future scope of the work it can be noticed 
that other possible conditions like various age and gender can 
be considered. Further it can be carried out through the 
different geographical locations.  
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