


Abstract—To realize rapid and accurate ripeness detection for
walnut on mobile terminals such as mobile phones, we propose a
method based on coupling information and lightweight YOLOv4.
First, we collected 50 walnuts at each ripeness (Unripe, Mid-ripe,
Ripe, Over-ripe) to determine the kernel oil content. Pearson
correlation analysis and one-way analysis of variance (ANOVA)
prove that the division of walnut ripeness reflects the change in
kernel oil content. It is feasible to estimate the kernel oil content
by detecting the ripeness of walnut. Next, we achieve ripeness
detection based on lightweight YOLOv4. We adopt MobileNetV3
as the backbone feature extractor and adopt depthwise separable
convolution to replace the traditional convolution. We design a
parallel convolution structure with depthwise convolution
stacking (PCSDCS) to reduce parameters and improve feature
extraction ability. To enhance the model's detection ability for
walnuts in the growth-intensive areas, we design a Gaussian Soft
DIoU non-maximum suppression (GSDIoU-NMS) algorithm. The
dataset used for model optimization contains 3600 images, of
which 2880 images in the training set, 320 images in the validation
set, and 400 images in the test set. We adopt a multi-training
strategy based on dynamic learning rate and transfer learning to
get training weights. The lightweight YOLOv4 model achieves
94.05%, 90.72%, 88.30%, 76.92 FPS, and 38.14 MB in mean
average precision, precision, recall, average detection speed, and
weight capacity, respectively. Compared with the Faster R-CNN
model, EfficientDet-D1 model, YOLOv3 model, and YOLOv4
model, the lightweight YOLOv4 model improves 8.77%, 4.84%,
5.43%, and 0.06% in mean average precision, 74.60 FPS, 55.60
FPS, 38.83 FPS, and 46.63 FPS in detection speed, respectively.
And the lightweight YOLOv4 is 84.4% smaller than the original
YOLOv4 model in terms of weight capacity. This paper provides a
theoretical reference for the rapid ripeness detection of walnut
and exploration for the model's lightweight.

Keywords—Ripeness, Coupling information, Lightweight,
YOLOv4

I. INTRODUCTION
HE ripeness is a vital basis for guiding the harvesting of
walnuts and a significant factor affecting the oil content of

kernels. Accurately judging the ripeness of walnuts is
conducive to scientifically determining the timing of harvesting
and improving the oil content of kernels to boost the economic
benefits of the walnut oil production industry [1]. Traditional
ripeness detection for walnuts relies on farmers' experience and
is subjective to personal factors, making it impossible to
guarantee the detection accuracy of the ripeness. An automatic,

fast, and accurate ripeness detection method for walnuts has
become an urgent need for the walnut planting industry and
walnut oil producers.
At present, non-destructive detection of fruit ripeness is

divided into non-visual and visual means. Non-visual means
are methods using electrical [2], vibrational frequency [3]-[6],
optical [7], and chemical properties [8]-[11] of the fruit. The
methods do not damage the internal tissues of the fruit and
achieve highly accurate ripeness detection. However, they rely
on complex and expensive detecting equipment for operation in
the laboratory, making it difficult to achieve timely detection in
the natural environment.
With computer technology and image processing technology

development, fruit ripeness detection based on computer vision
has become a research hotspot. Using the traditional computer
vision method to detect the fruit ripeness needs designing
artificial operator to extract the key features of fruit, such as
color, texture, and edge. Then the key features are input into
machine learning models such as support vector machine [12],
decision tree [13][14], random forest [15], artificial neural
network [16][17], and partial least squares [18]-[20] for
ripeness detection. The essential feature extraction of these
methods is complex, the real-time performance is poor, and the
accuracy is low in the natural environment. By inputting
large-scale image data and iterative training, deep learning can
extract the key features of the target independently, which has
strong adaptability and robustness [21][22]. At present, fruit
ripeness detection based on deep learning and computer vision
mainly uses segmentation [23][24] and object detection
methods [25]-[28]. Xue et al. proposed an improved FCN-8s
based segmentation method to achieve the segmentation of
Lingwu long jujubes of different ripeness [23]. The improved
network used a multiscale feature extraction module to extract
features from different sizes of objects. The experimental
results on Lingwu long jujubes dataset showed that the
intersection over union, mean intersection over union, precision
accuracy, recall rate, and F1 score were 93.50%, 96.41%,
98.44%, 97.86%, and 98.15%, respectively. The network
parameters of the improved FCN-8s were 5.37 million, and the
segmentation speed was 16.20 frames/s. Huang et al. used the
fuzzy Mask R-CNN model to identify tomato ripeness
automatically [24]. For the detection of 100 tomato images, the
fuzzy Mask R-CNN achieved an accuracy of 98.00%. The
ripeness classification of tomatoes achieved overall weighted
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precision and recall rates of 0.9614 and 0.9591, respectively. S.
Parvathi et al. used the Faster R-CNN model with the
ResNet-50 network to detect ripeness stages of coconuts in
natural backgrounds [25]. The method achieved a mean
average precision of 89.40% and an average recognition speed
of 3.124 frames/s. Chen et al. achieved detecting citrus in an
orchard environment using improved YOLOv4 [26]. The
network adopted the canopy algorithm and the K-means++
algorithm for improvement. The experimental results showed
that the improved YOLOv4 detector works excellent for
detecting different growth periods of citrus in the natural
environment, with an average increase in accuracy of 3.15%.
The average detection time of this model is 16.7 frames/s at
1920×1080 pixels. A. Kuznetsova et al. used the YOLOv3
algorithm for apple detection in a fruit-harvesting robot,
providing an average apple detection time of 19 ms with a share
of objects being mistaken for apples at 7.8% and a share of
unrecognized apples at 9.2% [27]. Liu et al. proposed an
improved YOLOv3 to identify the ripeness of strawberries [28].
The model adopted Gamma transform image enhancement to
improve the detection ability. The results showed that the
improved YOLOv3 algorithm provided the mean average
precision of 87.51% and detection speed of 58.1 FPS. It should
be emphasized that there is no research on the detection method
of walnut ripeness according to the current literature.
FCN segmentation model, Faster R-CNN, and YOLO object

detection model have achieved satisfying results in fruit
ripeness detection. The segmentation model represented by
FCN and the two-stage object detection model represented by
Faster R-CNN have strong generalization ability. However,
they consume more computer resources and take a long time to
detect, so it is difficult to adapt to mobile terminals [29]. An
additional note is that a real-time segmentation method exists.
But the method is mainly applied to halftone images [30].
However, images taken by mobile terminals such as mobile
phones are RGB images. In this paper, the YOLOv4 model is
selected in the walnut ripeness detection task. The model has
excellent advantages in detection accuracy and detection speed.
Above all things, the model has a particular structure, making it
easy to capture the subtle changes of walnut peel during the
ripening process. By aggregating the top-down semantic
features of the FPN layer and the bottom-up positioning
features of the PAN layer, the particular structure has an
outstanding effect in capturing the subtle changeable features
[31]. However, the backbone feature extractor of the YOLOv4
model is CSPDarkNet53, which has a complex structure and a
large number of parameters. The original feature fusion
network uses the traditional alternating convolution for feature
extraction and fusion, resulting in network parameters
redundancy and reducing the detection speed. Therefore, we
had improved the model by making it lighter. The lightweight
improvement would reduce the detection performance of the
model, especially for the target dense area. And walnuts grow
in clusters, leading to mutual shelter between the fruits.
Therefore, the problem of missing detection is serious. So we
proposed a new non-maximum suppression algorithm to
improve this phenomenon.

II. MATERIALS & METHODS

A. Experimental sample collection
According to the criteria used by industry experts to classify

the ripeness of walnuts, this paper classifies the ripeness of
walnuts into the following four grades: Unripe: the peel color is
dark green or green. Mid-ripe: the skin turns yellow-green or
yellowish. Ripe: the peel is yellow-green or yellowish, and the
top of the fruit is split and separated from the hull. Over-ripe:
the sides of the peel are cracked and open, and the nuts are
exposed.
The walnut variety selected for this experiment is "Liaoning

No. 1", and the samples were collected at the Dashan Xingang
walnut plantation in Mentougou District, Beijing, China
(115°58′01′′E， 40°01′29′′N， 818 m above sea level). Fifty
walnuts of each ripeness were picked in September-October
2020, and 200 fruits were collected. Figure 1 shows the sample
of four ripeness grades.

Fig. 1 Sample of walnuts with different ripeness

B. Image acquisition
The images were taken with an iPhone XR smartphone.

Images were taken on 12 September, 19 September, 26
September, and 3 October 2020. The shooting distance was less
than 1.5 m, and the shooting angle was a random multi-angle.
Each period was photographed with 300 shots, giving a total of
3600 images of walnut fruit. The image size is 3240×4032
pixels, and the image format is jpg.

C. Dataset construction
Three thousand six hundred images were obtained, of which

2880 images were in the training set, 320 images in the
validation set, and 400 images in the test set. All images in the
dataset are captured by mobile phones without other processing
methods. The ratio of the number of images in the training set
and the validation set is 9:1. That follows the common strategy
of data set division, which is conducive to the optimization of
the model. In the test set, there were 100 walnut images at each
ripeness grade. It maintains the balance of data and is
conducive to obtaining accurate detection results. The image
was annotated using the LableImg script according to the four
ripeness grades of walnuts. Unripe, Mid-ripe, Ripe, and
Over-ripe walnuts were labeled Maturity-1, Maturity-2,
Maturity-3, and Maturity-4, respectively. The format of the
markup file is XML, and the composition of the dataset is
Pascal VOC.
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Fig. 2 Walnuts labeled by LabelImg script

III. COUPLING RELATIONSHIP ANALYSIS

Walnut ripeness detection aims to improve the kernel oil

extraction rate and determine the best harvest time. Firstly, we
need to analyze whether the ripeness divided by experts can
reflect the change in kernel oil content. We figured out the
coupling relationship between the ripeness and the oil content
of walnut.
The oil content of 200 samples of kernels was determined by

the Soxhlet extraction method according to the Chinese
National Standard for Fat Determination GB 5009.6-2016. The
statistical and one-way analysis of variance (ANOVA) results
for oil content is shown in Table 1.

Tab. 1 Oil content statistics and one-way analysis of variance

ripeness Maximum
/%

Minimum
/%

Mean
/% Standard Deviation Significance Index F value P value

Unripe 64.08 46.54 55.41 0.078 0.823

22.009 0.000015Mid-ripe 73.46 70.12 72.25 0.015 0.314
Ripe 74.69 74.16 74.41 0.002 0.758

Over-ripe 69.97 67.73 68.97 0.008 0.887

As can be seen from the table above, the range of oil content
between the ripeness classes is clearly defined from Unripe to
Ripe, with no overlap between the values and a steady increase
in oil content. The oil content of the kernel decreases from Ripe
to Over-ripe. Variance satisfies the chi-squared condition.
Shapiro-Wilk was used to test the normality of the data within
the group, the significance indexes were all greater than 0.05,
and the data satisfied the normal distribution. The P-value in the
table was 0.000015<0.01, indicating that the oil content of the
samples at different ripeness was very significantly distinctive.
In addition, we analyzed the correlation between ripeness and
oil content using Pearson correlation. We found that the
correlation coefficient between ripeness and oil content was
0.832 from Unripe to Ripe, indicating a significant positive
correlation. The correlation coefficient between ripeness and
oil content from Ripe to Over-ripe was -0.981, demonstrating a
significant negative correlation. Therefore, the walnut ripeness
divided by experts can reflect the change of kernel oil content.
The corresponding relationship between the walnut ripeness
and the range of kernel oil content is shown in Table 1. Further,
post-hoc multiple tests were conducted using the least
significant difference (LSD) method for the different ripeness
grades, and the results are shown in Table 2.

Tab. 2 Multiple tests between different ripeness
Comparison between different ripeness grades P value

Unripe
Mid-ripe 0.000017
Ripe 0.000002

Over-ripe 0.000089

Mid-ripe Ripeness 0.400758
Over-ripe 0.210182

Ripe Over-ripe 0.036495

As can be seen from Table 2, the kernel oil content at Unripe
was very significantly different from that at the other ripeness

grades. The kernel oil content at Mid-ripe was distinctively
different from that at Unripe. The kernel oil content at Ripe was
significantly different from that at Unripe and Over-ripe. The
difference in oil content from Mid-ripe to Ripe was not
significant, indicating that the increase in kernel oil content
slowed down at this stage. The oil content peaked at Ripe and
decreased significantly at Over-ripe. Therefore, Ripe is the
most suitable harvesting period. Harvesting and extracting
walnut oil during this period can yield the most significant
economic benefits.
In summary, we can adopt the division of walnut ripeness by

experts to estimate the oil content of kernels. The next step is to
detect the ripeness of walnuts automatically and quickly.

IV. LIGHTWEIGHT YOLOV4 MODEL

The weight capacity of the original YOLOv4 is large, the
detection speed is slow, which leads to difficulty in deploying
on the mobile terminal. Walnuts grow in clusters, and the
lightweight improvement will reduce the detection ability of
the model to dense areas [32], resulting in missing detection.
Therefore, we had made the following improvements to the
original YOLOv4: we chose the MobileNetV3 network as the
feature extractor; we designed a parallel convolution structure
with depthwise convolution stacking (PCSDCS) and adopted
the depthwise separable convolution to replace the traditional
convolution. We followed the above strategies to reduce the
model’s weight capacity and improve the model’s detection
speed. To minimize the missing detection, we designed a
Gaussian Soft DIoU non-maximum suppression
(GSDIoU-NMS) algorithm.
The lightweight YOLOv4 model is shown in Figure 3.
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Fig. 3 Lightweight YOLOv4 model

A. Backbone Feature Extractor
MobileNetV3 is a lightweight feature extractor. The network

uses the bneck structure [33], which combines the
characteristics with the depthwise separable convolution [34]
and the linear bottleneck & inverse residual [35]. The
depthwise separable convolution uses k×k depthwise
convolution for feature extraction and then fixes the channels
using 1×1 pointwise convolutions. Adjusting the feature map’s
channel from N to M, the depthwise separable convolution is

only 2
11
kM

 of conventional convolution in terms of

parameters [36]. The linear bottleneck & inverted residual
structure contains two parts [35]: the backbone part uses 1×1
kernels to ascend the feature map's dimensions, deep separable
convolutions for feature extraction, and 1×1 kernels for
reducing dimensions. The residual edge part superimposes the
input and output of the bneck structure. In addition,
MobileNetV3 introduces the SENet attention mechanism to
improve the ability for feature extraction and uses h-swish
functions to enhance the model’s optimized performance [33].
MobileNetV3 is designed especially for mobile terminals.

The input image size of the network is 416×416 pixels, and its
main structure is shown in Table 3.

Tab. 3 MobileNetV3 network architecture
Input Operator Exp size #out SE NL s

224×224×3 conv2d - 16 - HS 2
112×112×16 bneck, 3×3 16 16 - RE 1
112×112×16 bneck, 3×3 64 24 - RE 2
56×56×24 bneck, 3×3 72 24 - RE 1
56×56×24 bneck, 5×5 72 40 √ RE 2
28×28×40 bneck, 5×5 120 40 √ RE 1
28×28×40 bneck, 5×5 120 40 √ RE 1
28×28×40 bneck, 3×3 240 80 - HS 2
14×14×80 bneck, 3×3 200 80 - HS 1
14×14×80 bneck, 3×3 184 80 - HS 1

14×14×80 bneck, 3×3 184 80 - HS 1
14×14×80 bneck, 3×3 480 112 √ HS 1
14×14×112 bneck, 3×3 672 112 √ HS 1
14×14×112 bneck, 5×5 672 160 √ HS 2
7×7×160 bneck, 5×5 960 160 √ HS 1
7×7×160 bneck, 5×5 960 160 √ HS 1
7×7×160 conv2d, 1×1 - 960 - HS 1
7×7×960 pool, 7×7 - - - - 1
1×1×960 conv2d 1×1, NBN - 1280 - HS 1
1×1×1280 conv2d 1×1, NBN - k - - 1

Among them, Input denotes the shape of the feature map.
Operator denotes the type of the feature extraction structure.
exp size denotes the channels after feature map ascending
dimension. #out denotes the channels of the output feature map.
SE denotes whether there is a Squeeze-And-Excite in that block.
NL denotes the type of nonlinearity used. Here, HS denotes
h-swish function and RE denotes ReLU function. NBN denotes
no batch normalization. s denotes stride. In addition, we can see
that the bneck structure is an important part of the
MobileNetV3 network. Its structure is as follows:

Fig. 4 Bneck structure

The bneck structure first uses the backbone part for feature
extraction, and then the original feature map is added to the
feature map output from the backbone part. In the above figure,
1×1 stands for 1×1 conventional convolution, 3×3 Dwise
stands for 3×3 depthwise convolution, Pool stands for global
average pooling, and FC stands for fully connected. RE is the
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activation function, and its expression is x)max(0,ReLU  . HS
stands for h-swish activation function, and its expression is

 
6

3)ReLU6(xxxswish-h 
 .

We selected the output feature maps of the 6th, 12th, and
15th bneck structures for the construction of the feature fusion
network. We deleted the structure after the 15th bneck structure
in the MobileNetV3 network because this part applies to the
classification algorithm. When the shape of the input image is
416×416×3, the shape of the output feature maps are
52×52×40，26×26×112, and 13×13×160, respectively.

B. Improved feature fusion networks
Regarding the improvements to feature fusion networks, we

replaced the traditional convolution with the depthwise
separable convolution and designed a structure of PCSDCS.
In the depthwise separable convolution, the depthwise

convolution applies a single filter to each input channel for
feature extraction. The pointwise convolution then uses a 1×1
convolution to combine the outputs of the depthwise
convolution. The depthwise separable convolution is as
follows.

Fig. 5 Depthwise separable convolution

The original YOLOv4 feature fusion network uses five
successive 1×1 and 3×3 alternating convolutions (hereafter
referred to as alternating convolutions) to extract and fuse
features from feature maps stacked at different scales. So the
alternating convolutions cause redundancy of parameters and
slow down the detection speed. We designed a parallel
convolution structure with depthwise convolution stacking
(PCSDCS) to solve the above problems. When the feature map
input shape is H×W×N, the PCSDCS uses two sets of different
depthwise convolution to extract the feature for each input
channel, and the feature map output shape is H×W×N. Finally,
the feature map output shape by stacking is H×W×2N. If the
feature map shape of the input convolution layer is H × W × N
and the output is H × W × 2N, the number of parameters
required for conventional convolution is 222 Nka  , the
number of parameters required for depthwise separable
convolution is 22 2NNkb  , and the number of parameters
used for the PCSDCS is Nkc 22 . Here, k is much smaller than
N. The ratio of the number of parameters required for the
PCSDCS to the number of parameters required for
conventional convolution and depthwise separable convolution,
respectively, is：

11
2
2

22

2


NNk
Nk

a
c (1)

1
2

2
2

2
22

2








Nk
k

NNk
Nk

b
c (2)

The PCSDCS completes the feature extraction, and the 1×1
convolution in the original alternate convolution completes the
feature fusion reorganization. With this structure, the detection
precision of the model did not drop significantly, but the
detection speed was improved, and the model’s weight capacity
was further reduced. The computational schematic of the
PCSDCS is as follows.

Fig. 6 parallel convolution structure with depthwise convolution
stacking (PCSDCS)

C. Non-maximal suppression method
The non-maximum suppression algorithm was used to select

the candidate box that belongs to the same category with the
highest score within a specific region, while other boxes will be
eliminated. Because walnuts grow intensively, and the
lightweight improvement will reduce the detection ability of
the model to dense areas, it is easy to miss detection targets
when detecting for ripeness. To solving this problem, the
DIoU-NMS method used in the original YOLOv4 is modified
to a GSDIoU-NMS in this paper.
The DIoU-NMS method used in YOLOv4 considers both the

value of Intersection over Union (IoU) and the distance
between the centers of the two candidate boxes to accelerate
loss convergence, which is given by:
























2

2 ),(
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c
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NbMRIoU
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DIoU

tiDIoU

tiDIoUi
i


(3)

Where Si - the score of candidate box i
M - the candidate box with the highest score
bi - the candidate box used for comparison in the current

category
IoU - the Intersection over Union calculated by candidate

boxM and bi
RDIoU - the DIoU loss function
Nt - the confidence level of the hyperparameter setting
b, bgt - coordinates of the central pixel points of the two

prediction boxes
c - the diagonal pixel lengths of the outer bounding boxes of

the two prediction boxes
ρ - Euclidean distance
The GSDIoU-NMS method is constructed based on the
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Soft-NMS method [37]. When tiDIoU NbMRIoU  ),( , the
score of candidate box bi is no longer directly set to 0 but is
multiplied by a penalty factor, which is calculated as:



2),(o ibMUI

ii eSS


 (4)

Where σ - width parameter, taken as 0.5 in this paper.
Since the GSDIoU-NMS method is not applied to all

candidate boxes, this step hardly reduces the runtime of the
detector.

V. MODEL TRAINING AND EVALUATION INDEXES

A. Model training
The model training hardware device and environment

configuration is Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz
processor, 16GB RAM, 8GB NVIDIA GeForce RTX 2080
graphics card, 500GB SSD, Windows 10 system, Tensorflow
1.13.2, and Keras 2.1.5 deep learning frameworks. To
obtaining training weights, we used a multi-training strategy
based on dynamic learning rate and transfer learning.
First, the Adam optimizer was used to make the loss

converge quickly, which facilitates the search for the globally
optimal solution region quickly: Freeze Epoch is 100 with the
initial learning rate of 0.001, the batch size of 32; Unfreeze
Epoch is 100 with the learning rate of 0.0001, the batch size of
8; Every 20 Epoch intervals, cut the learning rate to 1/10 of the
original.
Next, based on the weight of Adam optimizer training, the

SGD optimizer was used to obtain the globally optimal solution:
Freeze Epoch is 50 with the initial learning rate of 0.001, the
batch size of 32; Unfreeze Epoch is 50 with the learning rate of
0.0001, the batch size of 8; Every 10 Epoch intervals, cut the
learning rate to 1/10 of the original.

B. Evaluation indexes
To evaluating the lightweight YOLOv4 model, it is

necessary to consider its detection accuracy, speed, and weight
capacity. The weight capacity is measured according to the
amount of device memory occupied by the model. The model's

detection accuracy is measured by the precision, the recall, the
average precision (AP), and the mean average precision (mAP).
The average detection speed (ADS) measures the detection
speed. The calculation formulas are:

PP

P
FT

TP


 (5)

Np

p

FT
T

R


 (6)

 
1

0
dRRPAP (7)


m
AP

m
mAP

1

1 (8)

Nt
NADS  (9)

Where TP - the case that the model predicts a positive sample
and is a positive sample as well
FP - the case that the model predicts a positive sample but is a

negative sample
FN - the case that the model predicts a negative sample but is

a positive sample
m - the number of categories detected by the model
N - the number of images detected by the model
tN - the total time taken by the model to detect N images

VI. RESULTS & ANALYSIS

A. Effectiveness of improvement strategy
To prove the effectiveness of the improved method, we

designed ablation experiments. We tested the following
networks by controlling variables: (1) YOLOv4; (2) YOLOv4
+ MobileNetV1; (3)YOLOv4 + MobileNetV2; (4) YOLOv4 +
MobileNetV3; (5) YOLOv4+improved feature fusion networks;
(6) YOLOv4+GSDIoU-NMS; (7) Lightweight YOLOv4.
We trained the networks with the training set containing

2880 images. And we used the test set containing 400 images to
output the detection results. The detection results of the
ablation experiments are shown in Table 4.

Tab. 4 Detection results of ablation experiments

Method Mean average precision
/%

Precision
/%

Recall
/%

Average detection speed
/FPS

Weight capacity
/MB

YOLOv4 93.99 91.57 89.51 30.29 245.01
YOLOv4 + MobileNetV1 90.90 88.22 82.15 56.34 155.31
YOLOv4 + MobileNetV2 93.36 89.32 86.84 47.12 148.30
YOLOv4 + MobileNetV3 94.32 91.03 87.83 54.12 152.04

YOLOv4+improved feature fusion network 92.88 91.22 90.02 34.58 131.10
YOLOv4+GSDIoU-NMS 94.58 91.93 89.88 30.26 245.01
Lightweight YOLOv4 94.05 90.72 88.30 76.92 38.14

As shown in Table 4, MobileNet series networks effectively
reduce the model's weight capacity and improve the model's
detection speed. Experiments showed that the average
detection speed and the weight capacity of MobileNetV3 are
slightly different from those of MobileNetV1 and
MobileNetV2. But it has a significant advantage in the mean
average precision, precision, and recall. Therefore, the
MobileNetV3 network was selected as the backbone feature
extractor for lightweight YOLOv4.
It also can be seen from Table 4 that the improved feature

fusion network reduces the weight capacity and improves the
average detection speed. Moreover, the recall increased by
0.51%, the precision decreased by 0.35%, and the average
precision decreased by 1.11%. In the lightweight improvement,
the precision and the average precision of the model are not
significantly declining. On the contrary, the recall rate of the
model improved. It is due to the PCSDCS structure can
aggregate the multi-scale features of objects and improve the
detection ability of the model to target dense areas. This
structure can make up for the problem of reducing the recall
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caused by the lightweight improvement of the model.
About the method of YOLOv4+GSDIoU-NMS, we focus

on the impact of GSDIoU-NMS on the recall (The missing
detection rate is equal to 1 minus the recall). The
GSDIoU-NMS improves 0.37% over DIoU-NMS in terms of
recall. Furthermore, due to the reduction of the missing
detection rate, the mean average precision is improved by
0.59%. This method enhances the screening ability of target
dense areas. The comparison of different NMS algorithms is
shown in Figure 7.

Fig. 7 Comparison of different NMS algorithms

Combining three improved methods, we proposed the
lightweight YOLOv4. The lightweight YOLOv4 is slightly
higher than the original YOLOv4 by 0.06% in mean average
precision. The precision and recall of lightweight YOLOv4 are
slightly lower than those of the original network, caused by
significantly reducing parameters. Even so, these two indexes
are still very close to the original model. It is worth noting that
the average detection speed and weight capacity are important
evaluation indexes of the improved model, which are related to
whether the model can be deployed on the mobile terminal.
The average detection speed is 2.54 times that of the original,
and the weight capacity is reduced by 84.4%. Therefore, the
proposed improved method effectively reduces the model's
weight capacity and enhances its detection speed without
reducing the mean average precision, making it possible to
deploy mobile terminals.

B. Experimental results
We used the lightweight YOLOv4 model to detect walnuts

at each ripeness grade. We used the test set containing 400
images to output the test results. The performance of the
lightweight YOLOv4 in terms of average precision, precision,
and recall is shown in Table 5.

Tab. 5 Each ripeness test results

ripeness Mean average precision
/%

Precision
/%

Recall
/%

Unripe 93.74 88.46 87.79
Mid-ripe 92.24 89.68 84.33
Ripe 93.26 86.23 89.47

Over-ripe 96.96 98.50 91.61

Table 5 demonstrates that the lightweight YOLOv4 model’s
mean average precision, precision, and recall are the highest
when walnuts are in the Over-ripe. Those indexes achieve
96.96%, 98.50%, and 91.61%, respectively. When walnuts are
in Mid-ripe, the detection model’s mean average precision and
recall are the lowest, 92.24% and 84.33%, respectively. When
walnuts are in Ripe, the detection model’s precision is the
lowest with 86.23%.
We analyzed the reasons for this result. Compared with

other ripeness, the characteristics of walnuts are more
distinctive in the Over-ripe. The walnut peel cracked, and the
nut was exposed at this ripeness grade, so the model is easy to
detect walnuts with this ripeness. The Mid-ripe and the Ripe
are in the transitional ripeness stage. Compared with adjacent
ripeness stages, there is no significant difference in walnut
appearance in this period. The lightweight YOLOv4 model is
prone to incorrectly detecting Ripe and Mid-ripe as Over-ripe
and Unripe. Moreover, the detection model is sensitive to
significant changes of characteristics, but it is easy to make
mistakes for the subtle changes of the peel. So the mean
average precision, precision, and recall hit the highest when
walnuts are in the Over-ripe. Since Ripe is the optimum
harvest time, we need to pay more attention to the test results
under this ripeness. At Ripe, the mean average precision,
precision, and recall of lightweight YOLOv4 are 93.26%,
86.23%, and 89.47% respectively. The three indexes are
greater than 85%, meeting the requirements of ripeness
detection accuracy. Therefore, the method we proposed
enables the accurate detection of walnut ripeness.
The detection images output by the lightweight YOLOv4

model is shown in Figure 8.

Fig. 8 Walnut ripeness detection results

C. Comparative analysis
To further test the lightweight YOLOv4 model, the

lightweight YOLOv4 model was compared with the Faster
R-CNN+ResNet50 model, the EfficientDet-D1 model, the

YOLOv3 model, and the YOLOv4 model on the test set. We
adopted the mean average precision, the precision, the recall,
the average detection speed, and the weight capacity as the
evaluation indexes. The detection results are shown in Table 6.

Tab. 6 Comparison of detection results of different methods
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Method Mean average precision
/%

Precision
/%

Recall
/%

Average detection speed
/FPS

Weight capacity
/MB

Faster R-CNN+ResNet50 85.28 86.25 75.91 2.32 108.66
EfficientDet-D1 89.21 86.40 86.43 21.32 27.08

YOLOv3 88.62 86.86 77.67 38.09 235.49
YOLOv4 93.99 91.57 89.51 30.29 245.01

Lightweight YOLOv4+DIoU_NMS 93.54 90.37 86.87 76.96 38.14
Lightweight YOLOv4 94.05 90.72 88.30 76.92 38.14

The mean average precision, precision, recall, average
detection speed, and the weight capacity of the lightweight
YOLOv4 model on the test set were: 94.05%, 90.72%, 88.30%,
76.92 FPS, and 38.14 MB, respectively, which superior to the
Faster R-CNN model and the YOLOv3 model for the same
indexes. Compared with Faster RCNN and YOLOv3, the mean
average precision, precision, and recall of the lightweight
YOLOv4 model are significantly improved, indicating that the
ripeness detection effect of this model is better. The average
detection speed of the lightweight YOLOv4 model is 33 times
that of Faster RCNN and 2 times that of YOLOv3, indicating
that the detection efficiency of this model is higher. The weight
capacity of the lightweight YOLOv4 model is about one-third
of Faster RCNN and one-fifth of YOLOv3, indicating that the
model occupies less device memory. It is very beneficial to the
deployment of the model in mobile terminals. It is worth noting
that the weight capacity of the EfficientDet-D1 model is 27.08
MB that is 11.06 MB smaller than the lightweight YOLOv4.
However, other evaluation indexes of the EfficientDet-D1
model are worse than lightweight YOLOv4. Weight capacity is
one of the criteria for evaluating the advantages and
disadvantages of the model. The lightweight YOLOv4
occupies 38.14MB of memory and also can be easily deployed
for mobile terminals. For other indicators, lightweight
YOLOv4 is better. Therefore, Compared with the
EfficientDet-D1 model, lightweight YOLOv4 is more suitable
for deployment in mobile terminals for ripeness detection.
Compared with the original YOLOv4 model, the mean average
precision of lightweight YOLOv4 is improved by 0.06%, the
detection speed is increased by 2.54 times, and the weight
capacity is reduced by 84.4%. However, the precision and
recall of lightweight YOLOv4 are lower than those of the
YOLOv4 model. It is a general consequence of the model for
lightweight improvement [32]. The lightweight improvement
will reduce the detection ability of the model to the target dense
area. We replaced the GSDIoU-NMS algorithm of the
lightweight YOLOv4 model with the original DIoU-NMS
algorithm. It is found that if the non-maximum suppression is
not improved, the precision and recall of the lightweight model
will be lower. Therefore, the GSDIoU-NMS algorithm
proposed by us is meaningful. In summary, it shows that the
lightweight YOLOv4 model realizes the weight capacity
reduction and the detection speed increase while ensuring
detection precision.

VII. CONCLUSION
In this paper, we analyzed the coupling relationship between

walnut ripeness and kernel oil content. The coupling
relationship proved that the oil content of walnut kernel was
significantly different at each ripeness grade. We can estimate
the range of oil content in the walnut kernel by detecting the
ripeness of walnut. We proposed a lightweight YOLOv4 model
to detect walnut ripeness at different growth stages rapidly. The

conclusions are as following:
The lightweight YOLOv4 model reduces the number of

parameters, improves the detection speed, and mitigates the
detection performance of the model decreases in walnut
growth-intensive areas. In terms of model structure, we
selected MobileNetV3 as the backbone feature extractor for the
lightweight YOLOv4 model, designed a structure of PCSDCS,
and used the depthwise separable convolution to replace the
conventional convolutional. We developed the GSDIoU-NMS
method to enhance the model's ability to detect the ripeness of
walnuts growing in intensive areas. We used multiple training
strategies based on dynamic learning rates and transfer learning
to optimize the model in terms of training.
The lightweight YOLOv4 model achieved 94.05%, 90.72%,

88.30%, 76.92 FPS, and 38.14 MB in the mean average
precision, precision, recall, average detection speed, and weight
capacity, respectively. Compared to the original YOLOv4, the
lightweight YOLOv4 is 0.06% better in mean average precision,
2.5 times faster in average detection speed, and 84% smaller in
weight capacity. Therefore, the model can meet the detection
requirements and mobile terminal deployment requirements for
the different ripeness grades of walnuts.
We make a practical discussion on the lightweight

improvement of the object detection algorithm. We used the
lightweight YOLOv4 model to detect the ripeness of walnut
and judge the oil content of walnut kernel according to the
coupling relationship, so as to scientifically determine the
harvest time and improve the oil extraction rate of the walnut
kernel. However, it should be emphasized that the walnut
variety for the experiment we selected is Liaoning No. 1.
Therefore, it may be necessary to limit the variety of walnut
when applying the lightweight YOLOv4 model. In the next
stage of research, we will study the ripeness detection of more
varieties of walnut.
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