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Abstract- Partial label learning is a new weak-
ly supervised learning framework. In this frame-
work, the real category label of a training sample
is usually concealed in a set of candidate labels,
which will lead to lower accuracy of learning al-
gorithms compared with traditional strong super-
vised cases. Recently, it has been found that met-
ric learning technology can be used to improve
the accuracy of partial label learning algorithm-
s. However, because it is difficult to ascertain
similar pairs from training samples, at present
there are few metric learning algorithms for par-
tial label learning framework. In view of this,
this paper proposes a similar pair-free partial la-
bel metric learning algorithm. The main idea of
the algorithm is to define two probability distri-
butions on the training samples, i.e., the proba-
bility distribution determined by the distance of
sample pairs and the probability distribution de-
termined by the similarity of candidate label set
of sample pairs, and then the metric matrix is ob-
tained via minimizing the KL divergence of the
two probability distributions. The experimental
results on several real-world partial label dataset-
s show that the proposed algorithm can improve
the accuracy of k-nearest neighbor partial label
learning algorithm (PL-KNN) better than the ex-
isting partial label metric learning algorithms, up
to 8 percentage points.

Keywords- Partial label learning, Metric
learning, Similar pair-free, Weakly supervised
data.

I. Introduction

IN the traditional supervised learning framework,
training samples usually need to be accurately la-

beled with category information, which can achieve grat-
ifying results on small sample data. With the advent of
the era of big data, data scale is growing rapidly. Some-
times the labeling of sample category information will
consume huge manpower and material resources, and

the label forms of samples are various, so that the da-
ta obtained with accurate category label information are
limited. On the contrary, samples with incorrect labels,
multiple labels, inadequate labels, and local labels (i.e.
weakly supervised data) are usually readily available. In
this case, more and more research on weakly supervised
learning technology [1] has been conducted. Partial label
learning [2] is an important weakly supervised learning
framework in which a classifier can be trained by know-
ing only a candidate set of the real category label of the
training samples, so in many practical problems [3] it has
a wide range of applications.

Due to the requirement of finding the real category
label from several candidate category labels of the train-
ing sample, the algorithm of the partial label learning
framework is more difficult to be established than the
traditional classification framework. In earlier studies,
scholars mainly tried to improve the traditional machine
learning model to establish the partial label learning al-
gorithms, such as k-nearest neighbor model [4], linear
support vector machine [5], maximum margin method
[6, 7, 8], offset tree [9], and maximum likelihood esti-
mation [10] are gradually being used to develop partial
label learning algorithms. The common idea of the above
methods to solve partial label learning problem is to dis-
ambiguate the candidate category labels of the sample in
the category label space, and have achieved certain ef-
fects. In recent years, it has been observed that mining
useful information in the feature space of the samples
to disambiguate candidate category labels can achieve
better results. The literature [11] and [12] developed t-
wo partial label learning algorithms using the manifold
structure information of training samples respectively.
Inspired by the above results, Zhou and Gu [13] proposed
a partial label metric learning algorithm based on geo-
metric mean model (PL-GMML) by studying the metric
learning problem in the partial label learning framework.
As the front end of the PL-KNN algorithm [4], the PL-
GMML algorithm can effectively improve the accuracy of
PL-KNN. The main idea of the PL-GMML algorithm is
as follows. First of all, two samples which both have non-
empty intersection of their candidate category label sets
and smaller distance are taken as a similar pair, while
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which have empty intersection of their candidate catego-
ry label sets are taken as a dissimilar pair, and then a
partial label metric learning algorithm is developed us-
ing the obtained similar pairs and dissimilar pairs based
on the traditional geometric mean model. Since the two
samples with both smaller distance and non-empty in-
tersection of their candidate category label sets may also
come from different categories, the construction method
of similar pairs in PL-GMML algorithm can not get com-
pletely accurate similar pair, which will affect the accu-
racy of the algorithm to a certain extent. In addition,
the geometric mean model makes the distance between
samples of different classes as large as possible by min-
imizing the distance determined by the inverse matrix
of the metric matrix. Although an analytical solution
of the metric matrix can be obtained, the accuracy of
the geometric mean model is usually lower than other
metric learning models. In view of the above two rea-
sons, this paper proposes a new similar pair-free partial
label metric learning algorithm, which is abbreviated as
PL-SPFML algorithm. The main idea of the algorithm
is to define two probability distributions on the training
samples, i.e., the probability distribution determined by
the distance of sample pairs and the probability distribu-
tion determined by the similarity of candidate label sets
of sample pairs, and then a metric matrix is obtained
via minimizing the Kullback-Leibler divergence of the t-
wo probability distributions, which makes the samples
in the same category collapse to the same point as far
as possible, and the distance of two samples come from
different category should be as infinite as possible. The
simulation results on the UCI dataset and the real-world
partial label dataset show that the PL-SPFML algorith-
m can better improve the classification accuracy of the
PL-KNN algorithm compared with the PL-GMML algo-
rithm.

The structure of the paper is as follows. Firstly, the
related work required in this paper is introduced. Sec-
ondly, the algorithm is described, and the flow chart is
given. Then the simulation experiment is carried out to
verify the performance of the algorithm and analyze the
experimental results. The final section draws conclusion-
s.

II. Related work

In the partial label learning framework, each train-
ing sample has multiple candidate category labels at the
same time, but only one of them is the true catego-
ry label. The mathematical description of the frame-
work is as follows: Let X =Rd, Y = {1, 2, ..., Q} be the
feature space and the category label space respectively,
S = {(xi, Yi)|i= 1, 2, · · · , n} be the given training sam-
ple set, where xi ∈ X represents the feature vector of
the i-th training sample, Yi ⊂ Y is the candidate cat-
egory label set of xi. The task of partial label learn-
ing is to learn a multi-class classifier f : X → Y based
on the training set S. In the early researches, people
mainly tried to improve the traditional machine learning
model to propose the partial label learning algorithm.

The literature [4] proposed a partial label learning al-
gorithm based on k-nearest neighbor model; literature
[5] proposed a partial label learning algorithm based on
the linear support vector machine; literatures [6, 7, 8]
proposed partial label learning algorithms based on the
maximum margin model; literature [9] proposed a learn-
ing algorithm based on offset tree; literature [14] pro-
posed a learning algorithm based on dictionary learning;
Gong et al. [15] and Feng and An [16] successively pro-
posed partial label learning algorithms based on regular-
ization method; literature [17] proposed a partial label
learning algorithm based on ECOC technology; Liu and
Dietterich [18] proposed a conditional multinomial mix-
ture model based partial label learning algorithm; Feng
and An [19] proposed a partial label learning algorithm
based on leveraging latent label distributions according
to different labeling confidence levels of different label-
s; literature [20] proposed a partial label learning algo-
rithm for structured output data with candidate labels;
Tang and Zhang [21] used Boosting techniques to opti-
mize the confidence-rated of candidate label in samples
to establish a partial label learning algorithm; literature
[22] proposed a partial label learning algorithm based
on binary classifier; Wang and Zhang [23] proposed a
partial label learning algorithm for class-imbalance da-
ta; literatures [24] and [25] proposed two partial label
learning algorithms based on Graph model; Zhou et al.
[26] proposed a partial label learning algorithm based on
Gaussian process model; Xu et al. [27] proposed a par-
tial label learning algorithm based on label enhancement
strategy; Lyu et al. [28] proposed a self-paced regular-
ization framework for partial-label learning; Yao et al.
[29] proposed a partial label learning algorithm by using
CNN model.

Because training data can be used to learn a better
distance metric to improve the accuracy of related learn-
ing algorithms, metric learning technology has attracted
wide attention from machine learning scholars in recent
years. Many excellent metric learning algorithms have
been proposed for the traditional classification problem.
Literature [30] proposed a metric learning model based
on information geometry; Weinberger and Saul [31] and
Verma and Jawahar [32] proposed a metric learning al-
gorithm based on maximum margin method; literature
[33] proposed a metric learning model based on geomet-
ric mean; Globerson and Roweis [34] proposed a metric
learning algorithm based on collapsing classes; Huai et
al. [35] proposed a metric learning from probabilistic
labels.

Since the true category label of the training sample in
the partial label learning problem is uncertain, it is dif-
ficult to accurately determine whether a pair of samples
belongs to the same class, the traditional metric learn-
ing technology cannot be directly applied to the partial
label learning problem. At present, the research of met-
ric learning algorithm for partial label learning problem
is rare. The authors only saw two partial label met-
ric learning algorithms proposed by using the geometric
mean model [13] and collapsing classes model [34], re-
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spectively. However, these two algorithms were proposed
by using the same construction method of similar pairs,
which can not get completely accurate similar pairs and
thus affects the performance of the algorithms.

III. The PL-SPFML Algorithm

A. Modeling

The same as the metric learning algorithm in tradi-
tional supervised learning framework, the purpose of this
paper is to learn a metric matrix A that the distance

d(x, x′|A) =

√
(x− x′)T

A(x− x′) (1)

determined by it will meet our requirements, where
x, x′ ∈ Rd represents the feature vectors of two samples,
and A is a symmetric positive definite matrix. In order to
avoid the computational difficulty caused by the square
root, we will use d2(x, x′|A) instead of d(x, x′|A) in the
process of modeling.

d2(x, x′|A) = (x− x′)TA(x− x′) (2)

In the partial label learning problem, the true catego-
ry label of the training sample is unknown but concealed
in a candidate category label set, so it is difficult to ac-
curately distinguish whether two samples belong to the
same category only according to the candidate catego-
ry label set. In literature [13], two samples which both
have non-empty intersection of their candidate catego-
ry label sets and smaller distance are taken as a similar
pair, but the similar sample pairs constructed in this way
are not accurate. Considering that in the partial label
learning framework, it is difficult to accurately obtain
similar pairs of samples, so this paper will construct a
metric learning model avoiding the steps of construct-
ing similar pairs and dissimilar pairs. The main idea is
to define two probability distributions on the training
samples, i.e., the probability distribution determined by
the distance of sample pairs and the probability distri-
bution determined by the similarity of candidate label
set of sample pairs, and then a metric matrix is obtained
via minimizing the KL divergence of the two probability
distributions, as follows.

Inspired by the idea of neighborhood component anal-
ysis model [36], for each training sample xi, in the metric
space determined by the metric matrix A , the probabil-
ity that the samples xj and xi are of the same category
(represented by pA(xj |xi) ) can be defined as

pA(xj |xi) =
1

Zi
e−d

A
ij =

e−d
A
ij∑

m6=i

e−d
A
im

(3)

where dAij = d2(xi, xj |A) = (xi − xj)TA(xi − xj). It
can be seen that the closer the distance between xj and
xi , the larger the probability that they are of the same
category, and vice versa. In addition, by using the can-
didate category label set of the sample, we define the

probability that the sample xj and xi are the same cat-
egory as follows

pA0 (xj |xi) ∝
|Yi ∩ Yj |
|Yi| · |Yj |

(4)

It can be seen that if the intersection of the candidate
category label set of the two samples is an empty set,
i.e. the two samples do not belong to the same category,
then pA0 (xj |xi)=0; if the candidate category label set of
both samples has only one element and the intersection is
non-empty (that indicate the two samples come from the
same category), then pA0 (xj |xi)= 1; other cases pA0 (xj |xi)
will be between 0 and 1. The purpose of this paper is
to find a metric matrix A such that the samples of the
same categories collapse into the same point as much
as possible, and the distance of two samples come from
different categories is as infinite as possible. To achieve
this purpose, we can look for a metric matrix A such
that pA(xj |xi) is as close as possible to pA0 (xj |xi) , so
the following objective function can be used

min
A

∑
i

KL[pA0 (xj |xi)|pA(xj |xi)] (5)

where KL[·|·] denotes the KL divergence between two
probability distributions. To prevent overfitting, we add
a regularization term λtr((A− I)T (A− I)) to the objec-
tive function, where λ is the regularization parameter,
I is an identity matrix. Therefore, the following new
objective function is established.

min
A

∑
i

KL
[
pA0 (xj |xi)|pA(xj |xi)

]
(6)

+λtr((A− I)T (A−I))
∆
= min

A
f(A)

In the case of discrete random variables, the KL di-
vergence is defined as:

KL[P (x)|Q(x)] =
∑
x∈X

P (x) log
P (x)

Q(x)
(7)

where P (x) , Q(x) are the two probability distribu-
tions on the random variable X. The objective function
of formula (7) can be expressed as formula (8) based on
the formula (7).

Since (xi − xj)TA(xi−xj) is a linear function, it can
be proved that the objective function f(A) in equation
(8) is a smooth convex function. The optimal solution of
the objective function (8) can be obtained by using the
gradient descent method, the Newton method and other
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common optimization methods [37].

min
A
f(A)

=min
A

∑
i

{
KL

[
pA0 (xj |xi)|pA(xj |xi)

]}
+λtr((A−I)T (A−I))

=min
A

 ∑
{i,j|i,j=1,2,···,n,i6=j}

pA0 (xj |xi) log
pA0 (xj |xi)
pA(xj |xi)

+λtr((A− I)T (A− I))
}

=min
A


∑

{i,j|i,j=1,2,···,n,i6=j}

|Yi ∩ Yj |
|Yi| · |Yj |

log

|Yi ∩ Yj |
|Yi| · |Yj |

·

∑
m6=i

e−dAim

e
−dA

ij


+λtr((A− I)T (A− I))

}
=min

A

 ∑
{i,j|i,j=1,2,···,n,i6=j}

|Yi ∩ Yj |
|Yi| · |Yj |

log
|Yi ∩ Yj |
|Yi| · |Yj |

+
∑

{i,j|i,j=1,2,···,n,i6=j}

|Yi ∩ Yj |
|Yi| · |Yj |

log

∑
m6=i

e−dAim

e
−dA

ij

+λtr((A− I)T (A− I))
}

=min
A

 ∑
{i,j|i,j=1,2,···,n,i6=j}

|Yi ∩ Yj |
|Yi| · |Yj |

log
|Yi ∩ Yj |
|Yi| · |Yj |

+
∑

{i,j|i,j=1,2,···,n,i6=j}

|Yi ∩ Yj |
|Yi| · |Yj |

log

∑
m6=i

e−(xi−xm)TA(xi−xm)

e−(xi−xj)
TA(xi−xj)

+λtr((A− I)T (A− I))
}

=min
A

 ∑
{i,j|i,j=1,2,···,n,i6=j}

|Yi ∩ Yj |
|Yi| · |Yj |

log
|Yi ∩ Yj |
|Yi| · |Yj |

+
∑

{i,j|i,j=1,2,···,n,i6=j}

|Yi ∩ Yj |
|Yi| · |Yj |

log
∑
m6=i

e−(xi−xm)TA(xi−xm)

+
∑

{i,j|i,j=1,2,···,n,i6=j}

|Yi ∩ Yj |
|Yi| · |Yj |

(xi−xj)TA(xi−xj)

+λtr((A− I)T (A− I))
}

(8)

B. Model Solving and Algorithm Implementation
In this paper, the gradient descent method is used to

solve the optimal solution of the objective function (8).
The iterative formula is as follows

At+1 = At − lrt+1∇f(At) (9)

where t is the number of iterations; lrt+1 is the step size
of the t+1 th step, lrt+1 is updated by the following
formula

lrt+1 = ρ× 1

1 + decay × t
(10)

where ρ is the learning rate and decay is the attenuation
rate. decay is set to a fixed value (0.01) in our experi-
ments. ∇f(At) is the gradient of f(A) at point At. By

deriving the objective function f(A), we can get the ex-
pression of ∇f(A) as follows

∇f(A) =

∑
{i,j|i,j=1,2,···,n,i6=j}

|Yi ∩ Yj |
|Yi|·|Yj |

−
∑
m6=i

e−(xi−xm)TA(xi−xm)(xi−xm)(xi−xm)T∑
m6=i

e−(xi−xm)TA(xi−xm)

+
∑

{i,j|i,j=1,2,···,n,i6=j}

|Yi ∩ Yj |
|Yi|·|Yj |

(xi−xj)(xi−xj)T +2λ(A−I)

(11)

It can be seen that∇f(At) is a real symmetric matrix,
which could ensure that At+1 obtained in each iteration
of equation (9) is a real symmetric matrix. Since it is
necessary to ensure that the obtained distance matrix
A is a positive definite matrix (at least a semi-positive
definite matrix), after calculating At+1 using equation
(9), we have to calculate the eigenvalue and eigenvector
of At+1, replace the negative eigenvalues with 0, and
then get the final At+1. The detailed flow chart of the
proposed algorithm is as follows:

Input: training set S = {(xi, Yi)|i = 1, 2, · · · , n} ,
hyperparameters λ and ρ,
maximum number of iterations tmax.

Step:
Step 1. Initialize t = 0 , At = I;
Step 2. Calculate the gradient ∇f(At) of f(A)

at point At according to (11);
Step 3. Update lrt+1 according to (10);
Step 4. Update At+1: At+1 = At − lrt+1∇f(At);
Step 5. Calculate the eigenvalues {λl} and the

corresponding eigenvectors {ul} of At+1,
update At+1: At+1 =

∑
l max(λl, 0)ulu

T
l ;

Step 6. If t > tmax, then output At+1,
otherwise t = t+ 1, go to Step 2;

Output: At+1

It can be seen that the computational complexity
of training model is mainly dominated by computing
the gradient (11) which takes about O(n2d2) operations,
where n is the number of training samples and d is the
dimension of the feature vector.

IV. Experiments and Analysis

A. Experimental Setup
In order to verify the performance of the PL-SPFML

algorithm proposed in this paper, we compare it with the
PL-GMML algorithm [13], and both of them are used as
the front end of the PL-KNN algorithm [4]. The pro-
cess is as follows: firstly, the PL-SPFML and PL-GMML
algorithms are used to learns a metric matrix A from
the training set, and then the Cholesky decomposition
A = LTL of A is calculated; secondly, the feature vector
x of each sample in the original training set and the test
set is transformed into a new feature vector Lx to ob-
tain a new training set and test set; finally, the PL-KNN
algorithm runs on the new training set and test set. Ex-
periments were conducted on 5 UCI data sets [38] and 4
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Table 1: Characteristics of the experimental data sets.

Data sets #Samples #Features #Classes
#Candidate labels

min max mean
Ecoli 336 7 8 - - -

UCI
Movement 360 90 15 - - -

Vehicle 846 18 4 - - -
CTG 2126 21 10 - - -

Segment 2310 19 7 - - -
Lost 1122 108 16 1 3 2.23

Real-world
FG-NET 1002 262 78 2 11 7.48
MSRCv2 1758 48 23 1 7 3.16
BirdSong 4998 38 13 1 4 2.18

real-world partial label problem data sets [17]. Table 1
gives characteristics of the experimental data sets. Since
the UCI data sets are traditional multi-class dataset, we
first transform them into partial label data sets by t-
wo parameters p and r before conducting experiments,
where p denotes the proportion of partial label samples
in the data set, and r denotes the number of candidate
category label for each partial label sample except for the
true category label. The specific transformation process
is described in [13]. In the experiments of this paper,
we take two values for p and r respectively, p = 0.3 or
0.6, r = 1 or 0.6. Therefore, for each UCI data set, 4
partial label data sets are generated by different combi-
nations of (p, r). The real-world partial label data set
Lost is composed of 1122 face images of 16 people cut-
ting from TV series, and each image is represented by
108 features obtained by the PCA method [5]; the FG-
NET data set comes from an age recognition problem
based on facial images [11]; the MSRCv2 data set con-
tains 1758 segmented image regions from 23 categories,
and each region consists of a 48-dimensional histogram
and gradient attributes [17]; the Birdsong data set con-
tains syllables of 4998 birds in 13 species, each syllable
consists of 38 attributes, and birds appearing within 10
seconds of the syllable are placed in the candidate label
set of the syllable [18].

For the PL-SPFML algorithm, on each data set,
the values of the parameters λ and ρ will be selected
from the set {0, 1 × 10−6, 1 × 10−5, · · · , 1 × 106} and
{0, 1× 10−6, 1× 10−5, · · · , 1× 10−1} by cross validation
method; the value of the parameter k on the UCI data set
and the real-world partial label data set will be obtained
respectively from the sets {k|k = 5, 8, 11, 14, 17} and
{k|k = 3, 5, 7, 9, 11, 13, 15} by cross validation method,
where k is the value of k in the PL-KNN algorithm. For
the PL-GMML algorithm, all parameters are set and s-
elected according to the requirements in [13]. All exper-
imental results in this section were computed based on
10 times of 5-fold cross-validation, and all experimental
data sets were normalized in the pre-processing stage.

B. Parameter Sensitivity Analysis

In order to verify the influence of hyper-parameters
λ and ρ on the accuracy of PL-SPFML algorithm , we
first conduct experiments on one real-world partial la-

bel data set (Lost) and two UCI data sets (Ecoli and
Movement)(r = 1, p = 0.3). Fig.1 shows the experi-
mental results on these three data sets when one of the
parameters is changed while the other one remains fixed.
It can be seen from Fig. 1(a) that when λ changes, the
highest accuracy of the algorithm on each data set is
higher than the accuracy at λ = 0, so this shows that it
is useful to add a regularization term tr((A− I)T (A−I))
to the objective function. It can be seen from Fig. 1(b)
that the learning rate ρ has a greater impact on the algo-
rithm, and the impact on different data sets is different.
Because the impact of λ and ρ on the accuracy of the
algorithm is different on different data sets and there is
no rule to follow, therefore, in the experiments of this pa-
per, the values of the parameters λ and ρ are obtained by
using cross validation method. The detailed description
can be found in the previous subsection.

C. Experimental Results

Table 2 shows the classification accuracy of the o-
riginal PL-KNN algorithm, and the PL-KNN algorithm
with the PL-SPFML algorithm and the PL-GMML algo-
rithm as its front-end on the 5 UCI data sets. The best
result on each dataset has been shown in boldface. It
can be seen from Table 2 that both the PL-SPFML al-
gorithm and the PL-GMML algorithm can significantly
improve the prediction accuracy of the PL-KNN algo-
rithm, while compared the PL-SPFML algorithm with
the PL-GMML algorithm, the former is better on about
half of these data sets, and the latter is better on others.

Table 3 presents the experimental results of each al-
gorithm on the real-world partial label data sets. The
same as in Table 2, the best result on each data set has
been shown in boldface. It can be seen from Table 3
that the PL-SPFML algorithm is better than the PL-
GMML algorithm on the three data sets. On the Lost
data set, the PL-SPFML algorithm can be nearly 8 per-
centage points higher than the PL-GMML algorithm; On
the FG-NET data set, the PL-SPFML algorithm can be
nearly 2 percentage points higher than the PL-GMML
algorithm.

Based on the above analysis, PL-SPFML algorithm
and PL-GMML algorithm have their own advantages on
UCI dataset, while PL-SPFML algorithm is superior to
PL-GMML algorithm on the real-world partial label data
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Fig. 1: Parameter sensitivity analysis on the Lost, Ecoli and Movement data sets.

Table 2: Classification accuracy comparison on UCI data sets(%)

Data sets Algorithms
Accuracy(mean±std.)

r=1, p=0.3 r=1, p=0.6 r=3, p=0.3 r=3, p=0.6
PL-KNN 86.30±0.61 86.04±0.71 85.42±0.99 82.42±1.06

Ecoli PL-GMML+ PL-KNN 85.98±0.88 84.46±1.32 85.15±0.80 82.11±1.97
PL-SPFML+PL-KNN 86.90±0.99 86.66±0.87 86.04±0.76 82.86±1.15

PL-KNN 75.58±1.36 75.22±1.02 74.69±1.41 74.08±1.10
Movement PL-GMML+ PL-KNN 79.81±1.21 78.33±0.96 78.83±1.44 76.56±1.98

PL-SPFML+PL-KNN 77.86±1.43 76.75±1.33 76.61±1.92 75.31±1.35
PL-KNN 71.75±0.71 68.04±0.96 69.04±0.88 65.27±0.91

Vehicle PL-GMML+ PL-KNN 78.92±0.74 78.00±1.03 78.05±0.81 74.86±1.13
PL-SPFML+PL-KNN 75.64±0.62 73.40±1.32 73.90±0.96 69.27±1.15

PL-KNN 74.69±0.28 74.27±0.45 73.87±0.62 72.13±0.61
CTG PL-GMML+ PL-KNN 76.81±0.52 75.22±0.79 75.80±0.35 70.95±0.63

PL-SPFML+PL-KNN 74.88±0.56 74.57±0.60 76.23±0.54 69.95±0.50
PL-KNN 94.39±0.22 94.27±0.22 94.39±0.10 92.81±0.19

Segment PL-GMML+ PL-KNN 95.67±0.23 95.27±0.45 95.55±0.33 93.84±0.40
PL-SPFML+PL-KNN 97.00±0.21 95.97±0.16 96.65±0.32 93.67±0.46

sets. In addition, the performance of PL-SPFML algo-
rithm on the real-world partial label data sets is better
than that of on the UCI data sets. In the partial la-
bel data sets transformed by UCI data sets, there is no
correlation among the candidate labels of each training
sample, which may be the reason why the performance
of the proposed algorithm on the UCI data sets is not as
good as that of on the real-world partial label data sets.
In the next section, we will try to analyze the reason of
this phenomenon.

D. Reason Analysis of the Phenomenon That the
Performance of PL-SPFML Algorithm on Real-
world Partial Label Data Sets is Better Than
That of on UCI Data Sets

We know that in the real partial label problems, the
candidate labels of the samples are usually related. In
order to verify whether the proposed algorithm is capa-
ble of mining the correlation between candidate labels
and thereby resulting its performance on real-world par-

tial label data sets is better than that of on the UCI data
sets, we use two dimensional Gaussian distribution ran-
domly generate a partial label data set (named Normal-
UCI data set) with no correlation between the candidate
labels of the samples and a partial label data set (named
Normal-partial data set) with a certain correlation be-
tween the candidate labels of the samples. The two data
sets are generated as follows: first we generate three sets
of points based on three two-dimensional Gaussian dis-
tributions with different mean and variance, and these
three point sets are combined to form a standard three-
category data set called Normal data set, Fig.2 shows
the sample distribution of the Normal data set; Then
45% of the samples in the Normal data set are randomly
added one other label to form a partial label data set,
called the Normal-UCI data set, whose sample has no
correlation among the candidate labels since the candi-
date labels of each partial label sample in this data set
are randomly generated; In addition, for every two cat-
egories of the Normal data set, 45% samples located at
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Table 3: Classification accuracy comparison on real-world partial label data sets(%)

Algorithms Lost FG-NET MSRCv2 BirdSong
PL-KNN 36.10±0.73 4.65±0.40 44.27±0.54 63.11±0.19

PL-GMML+ PL-KNN 42.60±0.80 5.65±0.46 44.25±0.42 66.57±0.35
PL-SPFML+ PL-KNN 50.86±0.34 7.37±1.12 44.62±0.54 63.13±0.17

or near the junction of these two categories in Normal
data set are annotated as partial label samples and the
labels of these two categories are annotated as the candi-
date labels of these partial label samples, which can also
form a partial label data set, called the Normal-partial
data set. It is obvious that there is a certain correla-
tion between the candidate category labels of the samples
in Normal-partial data set. Fig.3 and Fig.4 respective-
ly show the sample distribution of the Normal-UCI and
Normal-partial data sets. It can be seen that the sample
distribution, number of points and proportion of partial
label samples in the two data sets are the same, except
that the partial label samples in the Normal-UCI data
set are evenly distributed, while the partial label sam-
ples in the Normal-partial data set are only distributed
in junction of every two categories.
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Fig. 2: Sample distribution of Normal data set.

Fig.5 shows the prediction accuracy of the PL-
SPFML algorithm on the Normal-UCI and Normal-
partial data sets as the hyper-parameters λ and ρ values
increase. When one of the two parameters is changed
while the other parameter remains fixed. It can be seen
from Fig.5, the accuracy of the PL-SPFML algorithm
on the Normal-partial data set is higher than that of
the Normal-UCI data set. Therefore, this can explain
to some extent the phenomenon that the results of the
PL-SPFML algorithm on the real partial label data sets
are better than the results on the UCI data set, because
it can mine the correlation between the candidate labels
but the candidate labels of the samples on the UCI da-
ta set usually have no correlation. Since the candidate
labels of the samples are usually correlated in the real
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Fig. 3: Sample distribution of Normal-UCI data set.

partial label problems, the algorithm of this paper can
deal with the real partial label problem better than the
PL-GMML algorithm.

V. Conclusion

Partial label learning is a new weakly supervised
learning framework with broad application prospects. It
has recently been discovered that metric learning tech-
niques can effectively improve the accuracy of partial
label learning algorithms. However, because it is diffi-
cult to ascertain similar pairs from training samples, at
present there are few metric learning algorithms for par-
tial label learning framework. In view of this, this paper
proposes a similar pair-free partial label metric learning
algorithm. The experimental results show that the pro-
posed algorithm can improve the accuracy of PL-KNN
algorithm better than existing algorithms on most of the
real-world partial label data sets. Of course, the pro-
posed algorithm still has a lot of room for improvemen-
t. For example, the users need to extract the features
of the samples based on some feature extraction tech-
nologies themselves before using the proposed algorithms
to deal with their application problems. Recently, with
the emergence of deep learning technologies, end-to-end
learning algorithms have received widespread attention
due to the ability of integrating the processes of feature
extraction and learning algorithm construction. In the
future work, we will try to develop an end-to-end partial
label metric learning algorithm by replacing the mod-
el used in this paper with a deep learning model. In
addition, we will try other solving methods to quickly
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Fig. 5: Results of PL-SPFML algorithm on Normal-UCI and Normal-partial data sets.
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Fig. 4: Sample distribution of Normal-partial data set.

calculate the optimal solution of objective function.
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