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Abstract—Because the traditional method of solving 

nonlinear equations takes a long time, an optimal path 

analysis method for solving nonlinear equations with 

limited local error is designed. Firstly, according to the 

finite condition of local error, the optimization objective 

function of nonlinear equations is established. Secondly, set 

the constraints of the objective function, solve the optimal 

solution of the nonlinear equation under the condition of 

limited local error, and obtain the optimal path of the 

nonlinear equation system. Finally, experiments show that 

the optimal path analysis method for solving nonlinear 

equations with limited local error takes less time than other 

methods, and can be effectively applied to practice. 

 

Keywords—Constraints, mixed, local error, nonlinear 

equations, optimization path. 

I. INTRODUCTION 

HE solution of nonlinear algebraic equations is a basic and 

important problem. A large number of practical problems 

in engineering practice, economics, information security and 

dynamics are converted into algebraic equations. Therefore, the 

solution of nonlinear equations becomes an important research 

content in engineering application and numerical calculation. 

Nonlinear equations refer to the relationship between dependent 

variables and independent variables is not linear, this kind of 

equations are many, such as square relations, logarithmic 

relations, exponential relations, trigonometric functions, and so 

on. It is often difficult to obtain accurate solutions for this kind 

of equations, so approximate solutions are required, and the 

corresponding approximate solutions are gradually getting more 

and more attention. Nonlinear optimization is the 

interdisciplinary operational research and computational 

 

mathematics, many practical problems such as national defense, 

oil exploration, weather forecast, management, finance and 

other problems can be summarized as nonlinear optimization 

problems, such as the pattern recognition problems in 

information science, the portfolio problems in finance, the 

inversion problems in earth science, etc. These practical 

problems are usually high dimensional nonlinear problems, so it 

is of great significance to study efficient methods to solve 

nonlinear optimization problems. The ill-posed nonlinear 

observation model is widely used in geodetic measurement and 

parameter inversion. For example, the Angle observation 

equation and the edge length observation equation with 

unknown parameters are both nonlinear functions of the 

coordinate of the fixed point. There are also a lot of nonlinear 

least square estimation problems in the field of deformation 

monitoring and inverse calculation of subgrade and pavement 

modulus. Because the observation error of modern field 

measurement is equal to or even less than the linear 

approximation error. Therefore, the study of the solution theory 

and method of ill-posed nonlinear observation model has not 

only theoretical significance, but also important engineering 

application value. 

At present, many research achievements have been made on 

the solution of nonlinear equations. Since the mathematical 

models of practical problems are mostly nonlinear equations, 

and only numerical solutions can be obtained, two kinds of 

algorithms can be divided into iterative algorithm and 

intelligent algorithm according to different types of algorithms. 

Iterative algorithm thought is through the preset initial solution, 

using some iterative way to get the solution of correction, finally 

reached the requirements of precision and so on, in which 

Newton’s method and its improved algorithm is the iteration 

algorithm of a class of nonlinear equations is very important, its 

main advantage is the convergence speed of 2 order, but the 

requirements for the initial value is very high, need as much as 
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possible close to the exact solution, at the same time each 

iteration needs computing Jacobi matrix, the relatively large 

amount of calculation, the solution for a long time, so the 

intelligent algorithm arises at the historic moment, In this paper, 

an optimal path method for solving nonlinear equations with 

local error is designed. 

II. METHOD AND MATERIALS 

Because the traditional method of solving nonlinear 

equations takes a long time, this paper designs an optimal path 

analysis method for solving nonlinear equations with limited 

local error. Through the finite condition of local error, the 

optimization objective of nonlinear equations is established. 

According to the optimization objective, the constraint 

conditions are set, and the optimal path to solve the nonlinear 

equations under the condition of local error is given. 

A. Optimization Objective Function of Nonlinear Equation 

The solution of nonlinear optimization problem is an 

important part in the study of real life optimization problem. In 

practical operation, the accuracy of solving one-dimensional 

subproblems needs to be improved because the 

one-dimensional accurate line search method can generate a 

large amount of computation, especially when the initial point is 

far away from the optimal solution point [1]. If Newton’s 

method and quasi-newton’s method are used to solve real 

problems, their convergence rate does not depend on the precise 

one-dimensional line search process. Therefore, we only need to 

ensure that every step of the calculation process of the objective 

function is optimized. 

This paper mainly studies Newton method, quasi-newton 

method and particle swarm optimization, summarizes the 

advantages and disadvantages of each algorithm in solving 

nonlinear equations, and improves the algorithm. For 

quasi-newton method and particle swarm optimization (PSO) 

algorithm to solve the problem of the advantages and 

disadvantages, the hybrid strategy, will be mixed quasi-newton 

method and particle swarm optimization (PSO), concluded that 

the new method in solving nonlinear equation, mixed 

quasi-newton particle swarm algorithm, the method to make up 

for the disadvantage of the two algorithms to solve the problem 

alone, the design of the local error under the condition of limited 

system of nonlinear equations solution optimization path model 

is shown in Fig. 1: 
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Fig. 1 Optimization path model framework for solving nonlinear 

equations under local error limit 

 

B. Objective Function Constraint Setting 

Nonlinear least squares problems of numerical iteration 

algorithm in the iteration process, most of them need to inverse 

iterative matrix, when the iteration matrix is morbid matrix, as a 

result of the iterative matrix inversion is not stable, may lead to 

poor iterative convergence effect, thus the nonlinear least 

squares problems is not the first qualitative phenomenon. 

Therefore, combining the characteristics of the nonlinear least 

square iterative matrix, the ill-posed criterion of the nonlinear 

least square iterative matrix is established. Based on the 

conditional number theory, a new method to reduce the 

conditional number of the iterative matrix is proposed [2]-[5]. 

Set the optimization goal and set the constraint conditions 

before optimization, as shown in Table Ⅰ: 

Table Ⅰ Constraint characteristics table 

Index Content Method 

1 
Level of abstraction of 

information 
Capturing design intent 

2 
Description of the 

constraint model 
Information expression level 

3 Support sketch design 

Determining the Topological 

Structure of Geometric Models 

Using Variational Geometry 

4 

Support model 

modification and 

mutation 

Association semantics 

5 

The modification 

process automatically 

reflects the designer’s 

intention 

Design environment 

automation 

6 

Facilitate the conversion 

of constraint models to 

data models 

Modifications and mutations 

often drive constraint 

relationships through model 

size 

 

The division of constraints is shown in Fig. 2: 
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Fig. 2 Constraint partitioning 

 

There are two types of geometric constraints: structural 

constraints and dimensional constraints. Structural constraint 

refers to the topological structure relationship between 

geometric elements, which describes the spatial relative 

position and connection mode of geometric elements, and its 

attribute values remain unchanged in the process of parametric 

design. It is often implicit in two-dimensional engineering 

drawings, not explicitly given, such as parallel, vertical, tangent 

and so on. Dimensional constraints are constraints represented 

by dimensional labels on the graph, such as distance, Angle, etc. 

Dimensional notation in engineering drawings is a direct and 

natural descriptor of geometry, thus providing the most 

appropriate way to modify geometry. The purpose of dimension 

drive is to modify the graph according to the change of 

dimension standard value and keep the topological structure 

relation before and after the graph change unchanged. Contents 

are shown in Table Ⅱ: 

 

Table Ⅱ Optimized content table 

Index Details Specific method 

Indicator 1 

Topological 

constraints of general 

positional 

relationships 

Including constraints such as 

joint, parallel, and vertical 

Indicator 2 

Constraints of 

various tangent 

classes 

Constraints such as common 

tangent line, common tangent 

circle, etc. 

Indicator 3 

Constraints that 

reflect the various 

arrangements of 

graphics 

Such as uniformly distributed 

on the circumference, 

uniformly distributed on the 

rectangle, etc. 

Indicator 4 

Constraints as 

specified in 

mechanical drawing 

specifications 

Such as thread internal 

diameter constraint 

Indicator 5 Symmetry constraint 
Establish the topology 

constraints of the graph 

Indicator 6 
Uniformly 

distributed constraint 
Simplify graphics editing 

 

This kind of calculation method also exists in the case of 

multiple solutions, even under the complete constraint mode, 

the multiplicity is universal. In the case of multiple solutions, it 

is necessary to select a set of solutions that conform to the 

design intention as much as possible from multiple solutions 

according to certain rules of trade-off. Two basic principles are 

adopted to deal with the case of multiple solutions in the 

complete constraint mode: 

Principle of invariant topological relations: the relative 

positions and topological connection relations between 

geometric elements shall remain unchanged as far as possible, 

while the principle of minimal shape change: The positions and 

shape changes of geometric elements shall be minimized as far 

as possible [6]-[9]. The example where the topological 

relationship remains unchanged is shown in Fig. 3: 
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Fig. 3 Example of topology invariant 

 

Based on the above constraints, the rule for finding the 

optimal solution is generated. Analyze the overall range of local 

error, replace the weighted coefficient of the solution method of 

nonlinear equations, and constrain the local error, satisfying the 

following relation: 

 /
q

G u
ar

                                    (1) 

where, G  represents the frequent term set of the method of 

solving nonlinear equations; 
q

ar
r represents the constraint 

condition, whose risk is destructive. u represents the solution 

of nonlinear equations to minimize empirical risk. 

q

ar
 as the calculation coefficient of the optimization path of 

the solution method of nonlinear equations, the local error set is 

constructed into a sequence of function subsets, so that each 

local error can be arranged in order from large to small, and the 

confidence range can be compromised among subsets. 

By using this function relation, the convergence 

characteristics of solutions of nonlinear equations under the 

condition of local error are calculated: 

  
a

k x q
x

                                   (2) 

where,   is the frequent item set under the condition of limited 

local error [10]-[15]; 
a

x
 represents the set matrix;  k x  
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represents the convergence characteristic of the optimal 

solution of nonlinear equations.   as a constraint for the 

generation of risk identification association rules. If  k x  in 

the minimum empirical risk in each subset is zero, then the 

minimum risk permutation is directly selected to determine the 

constraint conditions. If the number of the subsets in is infinite, 

a certain empirical risk of the local error condition is taken as 

the training object for displacement calculation until the optimal 

solution is obtained. 

Through the above process, the optimization goal is set for 

solving the nonlinear equations with limited local error. 

III. OPTIMIZATION OF SOLUTIONS TO NONLINEAR EQUATIONS 

UNDER FINITE LOCAL ERROR CONDITIONS 

After the above analysis, the particle swarm optimization 

algorithm and quasi-newton algorithm are fused to optimize the 

solution of nonlinear equations under the condition of local 

error. In particle swarm optimization, the potential solution to 

each optimization problem is a bird in the search space, called a 

particle. All particles have a fitness determined by the optimized 

function, and each particle has a velocity that determines the 

direction and distance they fly. The particles then follow the 

current optimal particle through the solution space. The particle 

swarm optimization algorithm is initialized as a random solution 

of a bunch of random particles, and then the optimal solution is 

found through iteration. In each iteration, the particle updates 

itself by tracking two extremes; The first is the optimal solution 

found by the particle itself, which is called the individual 

extremum; The other extreme value is the optimal solution 

found so far for the whole population. This extreme value is the 

global extreme value. If you don’t use the whole population, but 

only one part of it as the neighbor of the particle, then the 

extremum in all the neighbors is the local extremum. Suppose 

that in a target search space, there is a particle that forms a 

community, expressed as: 

 /
w

a
k a

zs
                                      (3) 

where, k  represents the dimension vector; 
a

zs
 represents the 

optimal location searched so far is called individual extremum; 

w

a  represents the global extreme value of the optimal 

location searched so far for the entire particle swarm. 

The whole part is divided into three steps. The first part is the 

“inertia” or “momentum” part, which reflects the particle’s 

movement “habit” and represents the particle’s tendency to 

maintain its previous speed. The second part is the “cognition” 

part, which reflects the particle’s memory or recall of its own 

historical experience, and represents the particle’s tendency to 

approach the best position in its own history. The third part is 

the “society” part, which reflects the group history experience of 

cooperation and knowledge sharing among particles, and 

represents the tendency of particles to approach the best 

historical position of the group or neighborhood. The algorithm 

flow is as follows: 

Step 1: Initialize a group of particles, including random 

position and velocity; 

Step 2: Calculate the fitness value of each particle; 

Step 3: For each particle, compare its fitness value with the 

fitness value of the best historical location. If it is better, take it 

as the best current location. 

Step 4: For each particle, compare its fitness value with the 

fitness value of the best position globally experienced [16]-[20]. 

If it is better, take it as the current global best position; 

Step 5: If the termination condition is reached and the preset 

maximum number of iterations is reached, output the current 

global optimal individual, otherwise let, step 2. 

The population covers the whole search space as evenly as 

possible to improve the global search ability. According to 

whether the neighborhood of particles is a whole population or 

not, each particle exchanges information with other particles in 

the whole population and has a tendency to move to the 

historical optimal position among all particles. In the initial 

stage of search, the neighborhood is defined as each particle 

itself. With the increase of iteration times, the neighborhood 

scope is gradually extended to the whole population. 

Performance space refers to the neighborhood divided 

according to performance indicators such as fitness, objective 

function value, and as the number of iterations increases, the 

connection between particles gradually increases, and finally a 

star topology is formed. The dynamic rank tree is adopted as the 

neighborhood structure, and the particles with better historical 

best position are in the upper layer. The velocity of each particle 

is determined by its own historical best position and the 

historical best position of the particle at the node above the 

particle in the rank tree. Whether it is the search of particle 

swarm in dimension or the cooperative search of multiple 

particle swarm in different dimensions, the purpose is that each 

particle can find the learning object that is conducive to fast 

convergence to the global optimal solution. This learning 

strategy allows each particle to have more learning objects and 

to fly over a larger potential space, thus facilitating global 

search. The speed update formula is: 

 w

i

po
G a

mK D
                                (4) 

where, G  represents the acceleration factor; a  represents 

uniform random number, 
imK represents the learning 

probability given in advance; o  represents the learning object 

as the best position in its own history; wp

D
 represents random 

individuals within a population. Except for the small-scale 

equation system W with special form, it is difficult to obtain the 

exact solution of the nonlinear equation system by the direct 

solution method. The vast majority of methods for solving 

nonlinear equations are iterative methods. The iterative method 

generally linearizes the nonlinear problem and calculates the 

solution of the linear problem, so as to obtain various forms of 

iterative sequences. At the same time, in order to ensure that the 
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particle can learn from the good object as much as possible and 

not waste time on the poor object, the above learning object 

selection process is set to an update interval algebra, during 

which the learning object remains the same as the last selected 

learning object. The updated interval algebra Settings are shown 

in Table Ⅲ: 

 

Table Ⅲ Update interval algebra settings 

Particle 

expansion 

Geometric 

constraint 

problem 

Purpose 

Assign a 

radius to each 

particle 

Neighborhood 

structure 

Do not actively change the state 

of the neighborhood 

Assign a 

radius to each 

particle 

Macro 

neighborhood 

Collaborative search in units of 

different dimensional 

components of space 

Assign a 

radius to each 

particle 

Search space Information exchange 

Assign a 

radius to each 

particle 

Local model 
Learn and communicate within 

a given neighborhood 

Assign a 

radius to each 

particle 

Increase particle 

diversity 

Each particle introduces a 

self-organizing risk index that 

is inversely proportional to the 

distance of adjacent particles 

Assign a 

radius to each 

particle 

Distance 

judgement 

Re-initialize the particle or 

push it a certain distance to 

reduce the risk 

 

All the above neighborhood structures, whether micro 

topology or macro neighborhood, whether it is information 

exchange in the whole search space or collaborative search 

based on different dimensional components of the space, do not 

actively change the neighborhood state. Therefore, there are 

exceptional constraints, as shown in Fig. 4: 

 

p4 l3 p3

p1 l1 p2

l4 l2

 
Fig. 4 Geometric constraint diagram 

 

On this basis, particle algorithm and quasi-newtonian 

algorithm are fused, and the hybrid strategy of selecting these 

two algorithms can be summarized as shown in Table Ⅳ: 

 

Table Ⅳ Mixed strategies of the two algorithms 

Step Content Method 

step 1 
Fusion of 

mechanisms 

Track two optimal solutions to update 

yourself 

Step 2 
Organic 

integration 
Strong local search ability 

Step 3 
Wide 

availability 

Removal of previous restrictions when 

used alone 

Step 4 

Features of 

parallel 

computing 

Organic combination of quasi-Newton 

method and particle swarm algorithm 

 

The flow of quasi-newton algorithm is as follows: 

Step 1: Initialize a swarm of particles, including random 

positions and velocities; 

Step 2: Calculate the fitness value of each particle; 

Step 3: For each particle, compare its fitness value with the 

fitness value of the best position in history. If it is better, take it 

as the current best position. 

Step 4: For each particle, compare its fitness value with the 

fitness value of the best position globally experienced. If it is 

better, take it as the current global best position; 

Step 5: If the termination condition is reached and the preset 

maximum number of iterations is reached, return the current 

global optimal individual to step 6; Otherwise, go to step 2; 

Step 6: If the termination condition is reached (If the preset 

precision is reached, the end will be reached, and the current 

result will be output as the optimal solution of the problem; 

Otherwise continue with quasi-newtonian algorithms. 

Finally, the discussion of choosing regular parameters and 

selecting strategies has been accompanied by the research 

process of ill-posed problems. From the point of view of 

computational implementation, the key problem is to determine 

the correctness to ensure that the solution to the problem is 

within our tolerance. 

In general, the selection methods of regular factors include 

ridge trace method, generalized cross - verification method, 

curve method, mean square error minimization method, etc. 

These methods require the introduction of additional formulas 

to calculate certain metrics of the iterative process. For 

example, curve method is used to determine the regular factor. 

In the measurement adjustment, the method of regular factor 

selection based on the mean square error criterion has also been 

studied. Considering the characteristics of the iterative 

algorithm for nonlinear least square problems and the 

unsuitability of nonlinear least squares, this chapter proposes 

two new determination strategies, namely direct search method 

and interval division method. 

The direct search method is adopted, and its contents are 

shown in Table Ⅴ: 

 

Table Ⅴ Search contents by direct search method 

Content Classification Details 

1 
Increase the number of 

individuals 

Explore the unknown 

space 

2 Spawn new individuals Maximum accumulated 
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benefits 

3 
Representation of a quantum 

chromosome 
Bring population 

4 Random observation 
Maintaining group 

diversity 

 

Since the quantum probability amplitude states that a 

quantum chromosome carries information about multiple states, 

the quantum chromosome is in a superposition of multiple 

determined states before we perform measurements on it. 

Therefore, a new individual is generated through the probability 

amplitude of quantum, and its principle is shown in Fig. 5. 

According to the above principle, the decision variable is no 

longer fixed information in a sense, but becomes a kind of 

information carrying information of different superposition 

states, so it can bring more abundant population than simply 

using genetic operation. Second, for some specific problems, it 

is not convenient to carry out crossover and mutation operations 

on chromosomes, because the operation will bring a large 

number of invalid chromosomes. The solutions are either to 

design special evolutionary operators or to correct invalid 

chromosomes after evolution, both of which increase the extra 

cost of the program. In this case, evolutionary manipulation of 

quantum chromosomes is a good strategy. Therefore, through 

the above analysis, the conditions for designing and using the 

genetic quantum algorithm are determined, as shown in Fig. 5: 

 

Likelihood

Initial structure

Termination 

condition

Assignment 

within a domain

Parallel 

Computing

Form of conflict
Solution 

optimization

Close file
 

Fig. 5 Conditions for using ga 

 

Combined with the above analysis, the optimization of 

nonlinear equations under the condition of local error is 

realized. 

 

IV. EXPERIMENTAL DEMONSTRATION 

Under the effective conditions of the finite nonlinear 

equations to solve the optimization path analysis method, the 

partial error process of the design was theoretically verified to 

verify its practical significance. Through test experiments, the 

Newton method, the quasi-Newton method and the particle 

Compared with the group optimization (PSO) method, we 

compare the Newton algorithm, a kind of H-order convergence 

algorithm in solving the numerical performance of the root 

problem of a one-variable function. Secondly, we give the 

numerical performance of the algorithm in solving general 

nonlinear equations. Experimental examples are selected from 

the standard test library, Newton’s method W and a class of 

H-order Newton’s algorithm are tested separately, and 

comparative analysis is done. Numerical experiment code uses 

the MaticalO. It is written in O and runs on a personal computer 

equipped with Intel 3.6GHz processor, 4GB memory, 64-bit 

Windows10 operating system. Check the efficiency of solving 

the four solutions of the nonlinear equation system. 

A. Experimental Configuration 

In the Windows 10 operating system, C language is used for 

programming, and experiments are conducted on the MATLAB 

platform. The hardware environment is shown in Table Ⅵ: 

 

Table Ⅵ Experimental hardware environment settings 

Device Environmental parameters Description 

processor Intel(R) Core(TM) 2 Duo  
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CPU 2.94 GHz  Maximum running speed 

Effective memory 8 GB   

Initial sampling frequency 0.8 Hz  
Maintained during commissioning 

Termination frequency 0.15 Hz  

Bit rate 0.59 /Bps s   

Microsoft Excel 2003  Export experimental data 

Adobe PDF Reader 7  Export / print data 

Display resolution 1024 * 768 or more  

Internet access rate 56kbps Guaranteed stable internet connection 

Mechanical hard drive Seagate Barracuda Series 2TB  

power supply Great Wall Dragon 700w  

SSD Kingston A400 Series 240G  

RAM Kingston 3000 frequency 16G * 2  

 

The experimental software environment is as shown in Table 

Ⅶ: 

 

Table Ⅶ Experimental software configuration 

Serial number Content Model 

1 database mysql 

2 Middleware tomcat 

 

B. Experimental Data 

In this experiment, the equations involved in an oil 

exploration project are selected. The project example is a planar 

four-bar mechanism. Some schematic diagrams are shown in 

Fig. 6: 

 

o

Ri i

Q

y

x

 
 

Fig. 6 A schematic diagram of the four-connected mechanism 

 

In engineering practice, the planar four-bar mechanism is 

widely used, and the kinematic synthesis of the mechanism has 

multiple solutions. In this project, there are 36 sets of equations 

during the function synthesis of the planar four-bar mechanism, 

which are randomly divided into 6 groups and numbered, and 

one group is randomly selected. The 6 sets of equations 

involved in this group are shown as follows: 

Example 1: 

   2

1 2 1 0f x x x                         (5) 

Example 2: 

    2 1 2cos 0.5 0f x x x                       (6) 

Example 3: 

 

 

 

 

2 2

1 1 2 3

2 2

2 2 3 1

2 2

3 1 3 2

( ) 5 40sin (10 ) 0

( ) 2 40sin (10 ) 0

( ) 3 40sin (10 ) 0

f x x x

f x x x x

f x x x x

    



   


   

       (7) 

Example 4: 

 

3 1

1 1 3 3

3 2

2 1 2 2

3

3 2 3

( ) 2 1 0

( ) 2 3 0

( ) 2 1 0

x

x

x

x

f x x e x

f x x x x e

f x x x e

      


      


     

        (8) 

Example 5: 

 2

1 1 4( ) 0.25 0.75f x x x x                (9) 

Example 6: 

 
1 6 1 5( ) 0f x x x x                 (10) 

Newton method, quasi-newton method and particle swarm 

optimization (PSO) were used to solve the above 6 examples 

respectively, and the solution time of the four methods was 

compared. 

C. Experimental Scheme 

The field surface runoff monitoring method is used to 

conduct natural runoff reduction in the selected typical small 

watershed, fixed point monitoring of rainwater runoff. 

Simultaneously monitor the runoff and output concentrations of 

nitrogen and phosphorus in each rainfall process. Two 

experimental indexes are set, respectively, the efficiency of 

searching particles in the solution space and the simplicity of 

calculating evolutionary operators in a single population. The 

main experimental schemes are as follows: 

Step 1: Input 6 equations of the experiment into the 

experimental database; 

Step 2: Use the four methods and the design method to 

calculate the equation; 

Step 3: Calculate one by one. After each calculation iteration 

is completed, the next calculation will be carried out to improve 

the accuracy of experimental results. 

Step 4: After the calculation, output the experimental results, 

and generate the experimental results through the above 

experimental platform. 
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D. Experimental Results 

Compare this method, Newton method and particle swarm 

optimization method to verify the convergence of the three 

methods, as shown in Fig. 7. 
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Fig. 7 comparison results of convergence 

 

According to Fig. 7, the convergence speed of this paper is 

faster than that of other methods, which shows that the 

convergence effect of this method is good and can quickly 

converge to obtain the optimal solution of the nonlinear 

equation. 

Will this paper method and Newton method, quasi-newton 

method and comparison of particle swarm optimization (PSO), 

multiple test, the test solution space in search of particle 

detection time, when measured in the same formula, different 

detection time response of different detection efficiency, 

through the experiment, four methods of experimental results, 

the method for design method of the comparison results are 

shown in Fig. 8: 
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Fig. 8 Experimental comparison results 

 

 

According to the comparison results in Fig. 8, in the process 

of 6 experiments, this design method has the shortest solution 

time than the traditional method. Therefore, through the above 

experiments, it can be proved that the optimal path analysis 

method for solving nonlinear equations with limited local error 

is more effective than the traditional method. And has the 

following advantages: good universality, can use a unified 

solution strategy to solve the nonlinear equations, programming 

workload is small; Can deal with complex constraint solving 

cases; Initial iteration values are not required. 

The calculation simplicity of evolutionary operators in a 

single population is affected by the number of evolutionary 

operators and search distance. The method proposed in this 

paper is compared with Newton method, quasi-newton method 

and particle swarm optimization algorithm. The calculation 

simplicity test results of evolutionary operators are shown in 

Fig. 9. 
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Fig. 9 Test results of computational simplicity of evolutionary 

operators 

 

As shown in Fig. 9, under the different evolutionary operator 

number limitation, compared with other methods, the method of 

searching the shortest distance that is within the shortest 

distance can realize optimization particles of the evolution 

operator, to illustrate the calculation of the method is simple, 

which can realize the equations involved in the petroleum 

exploration and engineering example is simple operation, and is 

applied in practice. 

Ⅴ. DISCUSSION 

Aiming at the problems of time-consuming and poor effect of 

traditional methods for solving nonlinear equations, an optimal 

path analysis method for solving nonlinear equations with 

limited local error is proposed and designed. According to the 

established constraints, the optimal path to solve the nonlinear 

equations under the condition of local error is given. The 

nonlinear equation optimization path model is obtained by 

solving the local error limit. The solution of nonlinear 

optimization problem is an important part of optimization 

problem research in real life. In practice, the accuracy of solving 

one-dimensional subproblems needs to be improved, because 

one-dimensional accurate line search method will produce a lot 

of computation, especially when the initial point is far from the 

optimal solution point. For the finite local error condition, the 

optimal objective setting of solving the nonlinear equation is 

set. If the number of subsets of in is infinite, a certain empirical 

risk of the local error condition is taken as the training object of 

displacement calculation until the optimal solution is obtained. 

Because the quantum probability amplitude indicates that the 

quantum chromosome carries information about multiple states, 

the quantum chromosome is in the superposition state of 

multiple determined states before we measure it. The solution is 

either to design special evolutionary operators or to modify 

invalid chromosomes after evolution, both of which increase the 

additional cost of the program. In this case, the evolutionary 

operation of quantum chromosome is a good strategy. 

Therefore, through the above analysis, the design and 

application conditions of genetic quantum algorithm are 

determined. 

Under the condition of the effectiveness of the optimization 

path analysis method for solving finite nonlinear equations, the 

local error process of the design is theoretically verified. The 

proposed method is compared with Newton method, quasi 

Newton method and particle swarm optimization (PSO), 

multiple tests, and the particle detection time is found in the trial 

solution space. When measured in the same formula, Different 

detection time response different detection efficiency, through 

the experiment, the experimental results of the four methods, the 

comparison results of the design method. Under different 

restrictions on the number of evolutionary operators, compared 

with other methods, the method of searching the shortest 

distance within the shortest distance can realize the optimized 

particles of evolutionary operators, which shows that the 

method is simple in calculation, can realize the equations and 

simple operations involved in petroleum exploration and 

engineering examples, and has been applied in practice. 

Ⅵ. CONCLUSION 

Optimization method is an important research branch of 

operations research and control theory. In practical problems, 

nonlinear optimization problems are often encountered. The 

hybrid quasi-Newton algorithm and particle swarm 

optimization algorithm are beneficial to enrich the search 

behavior of the optimization process, enhance the ability and 

efficiency of the hybrid algorithm, and obtain high-quality 

optimal solutions. The hybrid algorithm of quasi-Newton 

method and particle swarm optimization algorithm overcomes 

the shortcomings of each algorithm and eliminates the limitation 

of the previous single use. Compared with other single 

optimization algorithms, the search efficiency of the particle 

swarm quasi-Newton hybrid algorithm is very high. The particle 

swarm optimization (PSO) algorithm provides a good initial 

point for the global convergence of the quasi-Newton method, 

so that the quasi-Newton method can give Giving full play to its 

strong local search capabilities, it can be organically integrated 

with particle swarm optimization (PSO) algorithms to the 

greatest extent. 

But there are some problems with this research. In future 

research, improvements are still needed in many aspects. Since 

the development of particle swarm algorithm is not perfect, it is 

the choice of initial point. The choice of initial point of particle 

swarm has a certain impact on the performance of the algorithm, 

although particle swarm algorithm is the initial point. There is 

no special requirement, but in order to make the initial 

population cover the entire search space as evenly as possible 

and improve the global search capability, certain restrictions on 

the choice of initial points are required. Another aspect is the 

choice of parameters. The parameters of the particle swarm 

optimization algorithm mainly include the maximum speed, two 
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acceleration constants, inertia constant or shrinkage factor, etc. 

The reasonable choice of each parameter has a great influence 

on the solution result. 

 

References 

[1] H. H. Zhang, J. Z. Su, Q. Y. Wang, Y. M. Liu, L. Good, and 

J. M. Pascual, “Predicting seizure by modeling synaptic 

plasticity based on EEG signals - A case study of inherited 

epilepsy,” Communications in Nonlinear Science and 

Numerical Simulation, vol. 56, no. 12, pp. 330-343, 2017. 

[2] M. G. Abdol, and V. Azam, “Applications of artificial 

neural networks for adsorption removal of dyes from 

aqueous solution: A review,” Advances in Colloid and 

Interface Science, vol. 245, no. 6, pp. 20-39, 2017. 

[3] R. Rostamian, and H. Behnejad, “Insights into doxycycline 

adsorption onto graphene nanosheet: A combined quantum 

mechanics, thermodynamics, and kinetic study,” 

Environmental Science and Pollution Research, vol. 25, no. 

4, pp. 1-10, 2017. 

[4] A. Patra, J. E. Bates, J. W. Sun, and J. P. Perdew, 

“Properties of real metallic surfaces: Effects of density 

functional semilocality and van der Waals nonlocality,” 

Proceedings of the National Academy of Sciences, vol. 

114, no. 44, pp. 9188-9192, 2017. 

[5] W. Hamouche, C. Maurini, S. Vidoli, and A. Vincenti, 

“Multiparameter actuation of a neutrally-stable shell: A 

flexible gear-less motor,” Proceedings of The Royal 

Society A Mathematical Physical and Engineering 

Sciences, vol. 473, no. 2204, pp. 20170364, 2017. 

[6] O. Zavgorodnya, C. A. Carmona-Moran, V. Kozlovskaya, 

F. Liu, T. M. Wick, and E. Kharlampieva, 

“Temperature-responsive nanogel multilayers of poly 

(N-vinylcaprolactam) for topical drug delivery,” Journal of 

Colloid and Interface Science, vol. 506, no. 5, pp. 589-602, 

2017. 

[7] S. Gerhard, and H. Peter, “A non-equilibrium approach to 

allosteric communication,” Philosophical Transactions of 

The Royal Society B Biological Sciences, vol. 373, no. 

1749, pp. 20170187, 2018. 

[8] L. Pu, R. Saraf, and V. Maheshwari, “Bio-inspired 

interlocking random 3-D structures for tactile and thermal 

sensing,” Scientific Reports, vol. 7, no. 1, pp. 5834, 2017. 

[9] C. S. Zhou, C. Zhang, D. Tian, K. Wang, M. Z. Huang, and 

Y. B. Liu, “A software sensor model based on hybrid fuzzy 

neural network for rapid estimation water quality in 

Guangzhou section of Pearl River, China,” Journal of 

Environmental Science and Health, Part A. 

Toxic/hazardous Substances & Environmental 

Engineering, vol. 53, no. 1, pp. 1-8, 2107. 

[10] C. Reddick, M. Sorin, H. Sapoundjiev, and Z. Aidoun, 

“Effect of a mixture of carbon dioxide and steam on ejector 

performance: An experimental parametric investigation,” 

Experimental Thermal & Fluid Science, vol. 92, no. 3, pp. 

353-365, 2017. 

[11] C. S. Nelson, T. Huffman, J. A. Jenks, E. C. D. L. Rosa, G. 

H. Xie, N. A. Vandergrift, R. F. Pass, J. Pollara, and S. 

Permar, “HCMV glycoprotein B subunit vaccine efficacy 

mediated by nonneutralizing antibody effector functions,” 

Proceedings of the National Academy of Sciences, vol. 

115, no. 24, pp. 201800177, 2018. 

[12] K. S. Bhat, R. Ahmad, J. Y. Yoo, and Y. B. Hahn, “Fully 

nozzle-jet printed non-enzymatic electrode for biosensing 

application,” Journal of Colloid and Interface Science, vol. 

512, no. 23, pp. 480-488, 2017. 

[13] V. Pansare, V. Hwang, C. Figueroa, and R. K. 

Prud’homme, “Adsorption characteristics of charged and 

nonionic small molecules to colloidal alumina,” Journal of 

Colloid and Interface Science, vol. 512, no. 5, pp. 29-38, 

2017. 

[14] D. Lis, T. Stellingwerff, C. M. Kitic, J. Fell, and K. D. K. 

Ahuja, “Low FODMAP: A preliminary strategy to reduce 

gastrointestinal distress in athletes,” Medicine & Science in 

Sports & Exercise, vol. 50, no. 1, pp. 1, 2017. 

[15] B. Suanet, and T. C. Antonucci, “Cohort differences in 

received social support in later life: the role of network 

type,” The Journals of Gerontology. Series B, 

Psychological Sciences and Social Sciences, vol. 72, no. 4, 

pp. 75, 2017. 

[16] B. C. Simionescu, M. Drobota, D. Timpu, T. Vasiliu, C. A. 

Constantinescu, D. Rebleanu, M. Calin, and G. David, 

“Biopolymers/poly (ε-caprolactone)/polyethylenimine 

functionalized nano-hydroxyapatite hybrid cryogel: 

Synthesis, characterization and application in gene 

delivery,” Materials Science and Engineering, vol. 81, no. 

12, pp. 167-176, 2017. 

[17] M. Toshiaki, “Camera calibration based on the principal 

rays model of imaging optical systems,”  

Journal of the Optical Society of America A - Optics Image 

Science and Vision, vol. 34, no. 4, pp. 624, 2017. 

[18] T. Minamitani, Y. J. Ma, H. F. Zhou, H. Kida, C. Y. Tsai, 

M. Obana, D. Okuzaki, Y. Fujio, A. Kumanogoh, B. Zhao, 

H. Kikutani, E. Kieff, B. E. Gewurz, and T. Yasui, “Mouse 

model of Epstein-Barr virus LMP1- and LMP2A-driven 

germinal center B-cell lymphoproliferative disease,” 

Proceedings of the National Academy of Sciences of the 

United States of America, vol. 114, no. 7, pp. 4751, 2017. 

[19] R. S. Prakash, A. Sinha, G. Tomar, and R. V. Ravikrishna, 

“Liquid jet in crossflow – Effect of liquid entry conditions,” 

Experimental Thermal & Fluid Science, vol. 93, pp. 45-56, 

2017. 

[20] S. Yuan, J. S. Qin, and H. Q. Xu, “[Ti 8 Zr 2 O 12 (COO) 

16] Cluster: An ideal inorganic building unit for 

photoactive metal-organic frameworks,” ACS Central 

Science, vol. 4, no. 1, pp. 105-111, 2017. 

 

 

 
Xiaoxiao Ma, female, was born in May 1990. Her professional 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2022.16.13 Volume 16, 2022

E-ISSN: 1998-4464 103

https://www.researchgate.net/profile/Vikram-Pansare
https://www.researchgate.net/scientific-contributions/Victoria-Hwang-2133858143
https://www.researchgate.net/profile/Trent-Stellingwerff
https://www.researchgate.net/profile/Cecilia-Kitic
https://www.researchgate.net/profile/James-Fell-6
https://www.researchgate.net/profile/Kiran-Ahuja-2
https://www.researchgate.net/profile/Daniel-Timpu
https://www.researchgate.net/profile/Tudor-Vasiliu
https://www.researchgate.net/scientific-contributions/Cristina-Ana-Constantinescu-2059757710
https://www.researchgate.net/profile/Manuela-Calin
https://www.researchgate.net/profile/Geta-David
https://www.zhangqiaokeyan.com/journal-foreign-pmc-2932/
https://www.zhangqiaokeyan.com/journal-foreign-pmc-2932/
https://www.researchgate.net/profile/R-Prakash
https://www.researchgate.net/profile/Anubhav-Sinha-3
https://www.researchgate.net/profile/Gaurav-Tomar
https://www.researchgate.net/scientific-contributions/R-V-Ravikrishna-73667477


title is lecturer. She received her bachelor’s degree in 

agricultural resources and environment from Huazhong 

Agricultural University in 2012. She received her master’s 

degree in plant nutrition from Zhejiang University in 2015. She 

now works at Chongqing Vocational College of Transportation. 

Her areas of research include applied mathematics. She has 

published five academic papers. She is also involved in three 

research projects. 

 

 

 
Xiaojuan Chen, female, was born in December 1986. Her 

professional title is lecturer. She received a bachelor’s degree in 

horticulture from Jilin University in 2010. She received a PH.D. 

in horticulture and vegetable science from Zhejiang University 

in 2015. She is now working in Chongqing Vocational College 

of Transportation. Her field of study includes ideological and 

political education. She has published four academic papers. 

She is also involved in three research projects. 

 
 

Author Contributions: 
Xiaoxiao Ma established the optimization objective function of 

nonlinear equations. Xiaojuan Chen solved the optimal solution 

of nonlinear equations. 

Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING 
DOI: 10.46300/9106.2022.16.13 Volume 16, 2022

E-ISSN: 1998-4464 104




